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impulse response, and ray cycles
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The waveguide invariant, b, that manifests itself as interference fringes or “striations” in a plot of

frequency vs source–receiver separation, is usually thought of as a modal phenomenon. This paper

shows that striations can be explained simply through the variation of the eigenray arrival times

with range, in short, the variation of the multipath impulse response. It is possible to calculate b for

a number of sound speed profiles analytically and to find what b depends on, why it switches from

one value to another, how it depends on source–receiver depth, how it depends on variable bathym-

etry, and how smooth the sound speed profile needs to be for clear fringes. The analytical findings

are confirmed by calculating striation patterns numerically starting from eigenray travel times in

various stratified environments. Most importantly the approach throws some light on what can be

deduced from b alone and the likelihood and utility of striations in reverberation.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3569701]

PACS number(s): 43.30.Dr, 43.30.Cq [MS] Pages: 2863–2877

I. INTRODUCTION

The behavior of propagation interference fringes or

“striations” as sound source and receiver are separated can

be quantified through a “waveguide invariant” called b
(Chuprov, 1982; Brekhovskikh and Lysanov, 1991; D’Spain

and Kuperman, 1999; Brown et al., 2005). A special case of

these striations is the hyperbolic Lloyd mirror fringes that

have been used in passive ranging, allowing determination

of closest point of approach and ratio of range to source

depth (Hudson, 1983; Turgut et al., 2010). More general

range localization is discussed by Cockrell and Schmidt

(2010) and Søstrand (2005). In recent years b has been con-

sidered as a part of the toolset in geoacoustic inversion (Hea-

ney, 2004) and has been applied to the detection of targets

and estimation of reverberation (Goldhahn et al., 2008) and

active sonar (Quijano et al., 2008). It has also been tied into

topics such as time reversal focusing (Kim et al., 2003), fluc-

tuation statistics (Rouseff, 2002), and beam processing

(Yang, 2003). The effects of internal waves on the stability

of striation patterns has been studied by Rouseff (2001).

Most of the attempts to understand the patterns have

been through the normal modes of the waveguide. A comple-

mentary interpretation is that the behavior of the fringes is

determined by the behavior of the impulse response as the

receiver is moved—this is the approach presented in this pa-

per. Since it is possible to calculate the delay times of eigen-

rays numerically and in some cases analytically, it is then

possible, by writing out their Fourier transform, to see how

the fringes will behave. Because thinking in terms of the

impulse response is fairly intuitive this approach adds some

insight into the more conventional modal method, and in

some cases even enables a qualitative solution without

detailed computation.

In the high frequency limit the multipath impulse

response consists of many positive and negative impulses

that correspond to the many eigenrays. The introduction of

boundary-reflections, caustics, rough surfaces, low frequen-

cies certainly alters the detailed shape of these impulses, and

refraction may alter the sequence but nevertheless the fringe

pattern at a given range is the Fourier transform of this

impulse response. As the range between the source and re-

ceiver changes, the time ordering of the individual impulses

generally does not change but their separation does. If the

time separations widen, then the fringe separation in fre-

quency reduces in proportion and vice versa.

So one can construct the fringes by numerically calcu-

lating eigenray arrival times and rough amplitudes (includ-

ing signs) using a very crude representation of reflection loss

which automatically makes the sequence of impulses to tail

off, but with no allowance for caustics, and so on. However,

as we will see later, this envelope shape is not important.

The fringe pattern is just the modulus-square of the Fourier

transform of this impulse response. All the cases illustrated

in this paper can be obtained numerically in this manner, but

for the sake of credibility more sophisticated models are

used in the illustrations, as will be noted later.

The aim of this paper is to investigate the dependence of

the interference fringes on range analytically through the

quantity “b,” the waveguide invariant, which is the slope of

d(log x)=d(log r) or

b ¼ dx=dr

x=r
: (1)

It is well known that b¼ 1 for isovelocity with reflecting

boundaries, and b¼�3 for a uniform sound speed gradient,

but there are many other sound speed profiles which are of

interest and questions about range dependence, the influence

of random sound speed fluctuations, and implications for

reverberation.

a)Author to whom correspondence should be addressed. Electronic mail:

harrison@nurc.nato.int
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Section II explains the reasoning behind the relation-

ship between the eigenray travel times making up the

impulse response and the ray cycle distance and cycle time

for refracting environments. It discusses about fringes of

absolute phase (b) and the more familiar fringes of relative

phase (b0), and the effect of source and receiver depth.

Section III calculates these parameters for specific sound

speed profiles including isovelocity, uniform gradient, lin-

ear square of wavenumber, the pathological cosh profile

whose b is infinite, parabolic square of wavenumber, and

parabolic square of sound speed. A general power law

sound speed depth dependence is introduced, which can

gradually change from virtually isovelocity with a reflect-

ing boundary, through parabolic, then linear, to square

root, and beyond. Section IV considers hybrid profiles with

and without reflecting boundaries and shows that some

results are almost obvious from a ray point of view. It also

shows that randomness in the sound speed profile may

eventually destroy any visible stripes in the striation pat-

tern. Section V, in conjunction with the Appendix, distin-

guishes between the waveguide “invariant” and “ray

invariants” and investigates the effect of range-dependent

environments on striations. Striations may be observed in

reverberation; Sec. VI discusses the implications of the

approach of this paper.

II. ANALYSIS

The basic behavior of these fringes and their beta value

can be calculated analytically in several cases of interest.

A. Isovelocity

By the method of images it is straightforward to show

that the eigenrays arriving at horizontal range r occur at

angles hn given by

tan hn;l;m ¼ ð2nH þ lzs þ mzrÞ=r (2)

where n is an integer, H is the water depth, zs,r are the source

and receiver depths, respectively, and l, m both take the val-

ues þ1 and �1. Travel time is simply

tn;l;m ¼ r sec hn;l;m=c (3)

and the delay after the first return is

sn;l;m ¼
r

c
ðsec hn;l;m � 1Þ: (4)

In the small angle approximation this combined with Eq. (2)

becomes

sn;l;m ¼ ð2nH þ lzs þ mzrÞ2=ð2rcÞ: (5)

In the eigenray approximation the impulse response consists

of a weighted sequence of delta functions at the delays,

defined by sn,l,m, and consequently the Fourier transform of

the impulse response F(x, r), whose modulus-square is the

fringe pattern, is

Fðx; rÞ ¼
ðX

l;m

X
n

andðs� sn;l;mÞ expðixsÞds

¼
X
l;m

X
n

an expðixsn;l;mÞ: (6)

The summation over l,m means that for each value of n in

Eq. (2) there are four combinations of l and m over which we

should also sum. These four terms result in two positive and

two negative signs multiplied by almost identical values of

the weighting an. Thus we can think of Eq. (6) as four sepa-

rate summations over n in each, of which an is a positive

slowly varying function of n—in effect an envelope,

Fðx; rÞ ¼ �
X

n

an expðixsn;þ1;þ1Þ �
X

n

an expðixsn;�1;�1Þ

þ
X

n

an expðixsn;þ1;�1Þ þ
X

n

an expðixsn;�1;þ1Þ:

(7)

Substituting Eq. (5) in Eq. (6) for sn, and for the moment

ignoring the slow variation of an we find

Fðx; rÞ ¼ �
X

n

an exp i ðx=rÞð2nH þ zs þ zrÞ2=ð2cÞ
� �

�
X

n

an exp i ðx=rÞð2nH � zs � zrÞ2=ð2cÞ
� �

þ
X

n

an exp i ðx=rÞð2nH þ zs � zrÞ2=ð2cÞ
� �

þ
X

n

an exp i ðx=rÞð2nH � zs þ zrÞ2=ð2cÞ
� �

¼ Gðx=rÞ: (8)

Thus the complex Fourier transform F is explicitly a func-

tion of x=r, so no matter what its functional form is, it has

only one shape as x and r vary. At any given r there will be

a fringe pattern in x, but moving to a different value of r we

find the same pattern but stretched in x in proportion to the

increase in r. This automatically constructs a fringe pattern

where the modulation takes a constant value along lines

where x / r. In other words the condition for a fringe is

x
r
¼ A ¼ const: (9)

Taking logs and differentiating, we find that this obeys Eq.

(1) with b¼ 1, as it is well known.

The weights an can be written in terms of reflection

coefficients, etc.; although since their variation is always

much slower than that of the impulses their influence must

be small and it does not alter the above argument. It was

shown by Harrison and Nielsen (2007) that, for instance, in

isovelocity water the one-way multipath pulse envelope

decays approximately exponentially with time.

B. General refracting environments

We now extend these ideas to a general refracting envi-

ronment by attempting to write the Fourier transform in a
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form that again demonstrates explicitly the functional de-

pendence on x and r.

For a general stratified environment the eigenrays for

horizontal separation r obey

r ¼ nrcðhn;l;mÞ þ lrsðhn;l;mÞ þ mrrðhn;l;mÞ; (10)

where rc is the cycle distance (double the result of integrat-

ing from the top ray turning point to the bottom ray turning

point) and rs and rr are the partial cycle distances from the

top turning point down to the source and receiver depths,

respectively. Explicit formulas will be given later. The corre-

sponding eigenray travel times are

tn;l;mðrÞ ¼ ntcðhn;l;mÞ þ ltsðhn;l;mÞ þ mtrðhn;l;mÞ; (11)

where the tc, ts, and tr are the full cycle and partial cycle

travel times corresponding to rc, rs, and rr.

Equation (7) is true in general but with the behavior

of sn,l,m depending on sound speed profile. So we expect

similar relations in Eq. (8) but with the resultant G being

a function of the product of x with some different func-

tion of r. As it stands these fringes are in the complex

quantity F. Alternatively what is often observed is the

modulus-square of F, so the cross terms in jFj2 may be

important and these depend on (tn,l,m – tm,l,m). It transpires

that the value of b is very slightly different in the two

cases (see Appendix A3), and we had estimated both of

them below.

C. Condition for a fringe in absolute phase

We need to investigate the delay time sn,l,m after some

range-dependent datum, and we arbitrarily choose range r di-

vided by the minimum sound speed in the profile cL. So sn,l,m

can be expressed as

sn;l ;mðrÞ ¼ ntcþl tsþ m tr� r=cL

¼ n tc�
rc

cL

� �
þl ðts�

rs

cL
Þþ mðtr�

rr

cL
Þ

¼ r
tc

rc
� 1

cL

� �
þl rs

ts

rs
� tc

rc

� �
þ m rr

tr

rr
� tc

rc

� �
: (12)

As in the isovelocity case the eigenray impulses still come in

groups of four, two positive and two negative, and the sepa-

rations within a group (sn,61,61 – sn,61,61) are always

smaller than the group separation (snþ1,l,m – sn,l,m) (see Ap-

pendix A2). Therefore fringes due to the group separation

will be more closely spaced in frequency and more visible

than those due to the separation of the members of the group,

so we concentrate on group separation. We define the group

center as the point sn,0,0 which is almost identical to the

mean of the group.

sn;0;0ðrÞ¼r
tcðhn;0;0Þ
rcðhn;0;0Þ

� 1

cL

� �
: (13)

The equivalent of Eq. (7) for the groups is

F̂ðx; rÞ ¼
X

n

an expðixsn;0;0Þ: (14)

As argued earlier [after Eq. (8)], to see fringes it must be pos-

sible to write sn,0,0 as the product of a function of range by

only and a function of all the other parameters (e.g., n, H, zs,

etc.). In other words in the exponent of Eq. (14) the range de-

pendence must be separable. This ensures that on going from

one range to the next, the Fourier transform F̂ may shrink or

stretch slightly but always retains its shape. This property

forms the striation pattern. Without this property there is no

fringe pattern since F̂ may vary in an arbitrary manner.

It is always possible to calculate tc and rc for a given

launch angle (i.e., turning point velocity or horizontal wave-

number). Even if rc is a discontinuous function of the angle

it is still possible to plot tc=rc – 1=co as a function of cycle

distance rc since the latter is also a function of angle. Thus

we can always write sn as a function of rc, say sn¼ n (tc –

rc=co)¼ n G(rc). However this alone (in combination with

r¼ n� rc) does not ensure that sn is a separable function of

range r. The only function G that allows separation is

G rcð Þ ¼ grc
q (where g is a proportionality constant), since

G(rc)¼G(r=n)¼ g rq� n�q. Thus to see fringes (in the com-

plex Fourier transform) we must have

ðtc � rc=coÞ r�q
c ¼ gðH; cðzÞÞ ¼ Aj ¼ const (15)

for the jth fringe, and so,

sn;0;0 ¼ nðtc � rc=coÞ ¼ rq
c � ng ¼ rq � n1�qg; (16)

where q and g are to be determined and q is a constant. It is

shown in Appendix A that by using this equation to evaluate

d(log sn,0,0)=d(log rc), we can evaluate b directly. From Eq.

(16) which is the exponent of Eq. (14) then becomes

ixrq � ðn1�qgÞ and for the jth fringe we need

x rq ¼ Aj ¼ const; (17)

but taking logs and differentiating we find the behavior

exactly as in Eq. (1) with b¼�q. This implies that no other

behavior is possible.

D. Condition for a constant relative phase fringe

The relative phase condition depends on (sn,l,m – sm,l,m),

and it is shown in Appendix A that (sn,l,m – sm,l,m)¼ (n
– m)(tc – rc K=x). Following the arguments of the previous

section through but starting with (tc – rc K=x) instead of (tc
– rc=co) we find that Eq. (15) becomes

ðtc � rcK=xÞ r�q
c ¼ gðH; cðzÞÞ ¼ Aj ¼ const (18)

for the jth fringe, and so

sn;l;m � sm;l;m ¼ ðn� mÞðtc � rcK=xÞ ¼ rq
c � ðn� mÞg

¼ rq � ðn� mÞ1�qg: (19)
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Again it is shown in Appendix A that this equation can be

used to evaluate b0 directly.

E. Source and receiver depth in isovelocity water

From the earlier equations, notably Eq. (8), the source

and receiver depths have an effect on the striation pattern

itself (i.e., F), as do water depth H and sound speed c. In fact

they limit the range of angles (or modes) available to inter-

fere. However the effect on b is weak and non-existent in the

isovelocity case as explained in the argument leading to

Eq. (9). As noted in Appendix A the source and receiver

depths contribute small time offsets around the time tn,0,0

that separate the four impulses in each group. These offsets

have little effect on the interference fringes and the main pat-

tern is still a function of range.

Writing Eq. (8) another way by combining the source

and receiver delays

Fðx; rÞ ¼ 4
X

n

an expðixsn;0;0Þ sin x
ðzs

0

sin h=cdz

� �

� sin x
ðzr

0

sin h=cdz

� �
; (20)

the sine terms are essentially WKB modes (Wentzel,

Kramers, and Brillouin; see Morse and Feshbach, 1953) that

could individually form patterns of horizontal stripes on a

plot of frequency vs range, but collectively average to a uni-

form background for the striations caused by sn,0,0.

In isovelocity water keeping r and zs as constant, but

varying zr we see fringes with

xzr ¼ A ¼ const; (21)

but these are not as deeply modulated as the fringes in range.

An important different effect of source and receiver depth

will be discussed in the context of simultaneously refracting

and reflecting environments under “hybrids” in Sec. IV.

III. SPECIFIC SOUND SPEED PROFILES

We can now evaluate tc, rc, sn,0,0 for some given pro-

files, converting sn,0,0 to a function of range. We can then

evaluate b either through the relation between sn,0,0 and r or

by the following formulas derived in Appendix A. For abso-

lute phase fringes

b ¼ 1� cos h
ðcotc=rc � 1Þ ¼

So � Sp

Sg � So
(22)

and for relative phase fringes

b0 ¼ corc

ðcotc=rc � cos hÞ

�
x

drc

dK

� �
¼ � @Sp

@Sg
¼ sin h

@
@h

cotc
rc

� � : (23)

The latter b0 for relative phase fringes corresponds to that cal-

culated by Chuprov and several of the results below can be

found in Chuprov (1982). A summary of the results of this

section is given in Table I. In all the following examples the

ducts are assumed to be one-sided, even though the parabolic

and cosh profiles could obviously be extended to two-sided,

doubling their cycle distances and times. Figure 1 shows

log(tc – rc=co) vs logrc for each case. The straightness of the

TABLE I. The slope of interference fringes, b, calculated according to Eq. (22) compared with the standard waveguide invariant b0 according to Eq. (23) and

their approximate forms for various sound speed profiles. For the general profile shape m ¼ 1� 1=p and 3�2m
2m�1
¼ pþ2

p�2
. The asterisks indicate solutions already

published by Chuprov (1982).

Sound speed profile

b ¼ � Sp � So

Sg � So

¼ 1� cos h
ðcotc=rc � 1Þ

b0 ¼ � @Sp

@Sg

¼ sin h

�
@

@h
cotc

rc

� �
Approx.

c ¼ co cos h cos2 h * 1

cðzÞ ¼ coð1þ azÞ �3 cos2 h
1� 7=10 tan2 h� 3=40 tan4 h � � �

�3

1þ 3=5 sin2 hþ 3=7 sin4 h � � �
� 3

k2 ¼ k2
oð1� azÞ �3

2� sec h
�3

2� sec2 h
* � 3

c ¼ co cosh az 1 1 1

k2 ¼ k2
oð1� a2z2Þ 2

sec h� 1
� 4

h2

2

sec2 h� 1
¼ 2

tan2 h
* ! þ1

c2 ¼ c2
oð1þ a2z2Þ �8 cos2 h

tan2 h
ð1þ Oðh2ÞÞ
ð1þ Oðh2ÞÞ

�4 cos2 h
tan2 h

ð1þ Oðh2ÞÞ
ð1þ Oðh2ÞÞ

! �1

k2 ¼ k2
o 1� ðazÞpð Þ ð3� 2mÞ

2m� ð2� sec hÞ
ð3� 2mÞ

2m� ð2� sec2 hÞ
3� 2m
2m� 1

c2 ¼ c2
o 1þ ðazÞpð Þ cos2 h 1þ Oðtan2 hÞð Þ

2m� 1

3� 2m
þOðtan2 hÞ

cos2 h 1þ Oðtan2 hÞð Þ
2m� 1

3� 2m
þ Oðtan2 hÞ

3� 2m
2m� 1
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lines in Fig. 1 shows the goodness of fit to a line of constant b
and one can also see the variability between cases.

A. Isovelocity

For an isovelocity profile the cycle time and distance are

tc ¼ 2H=ðc sin hÞ (24)

rc ¼ 2H= tan h; (25)

whose ratio is sech, so both Eqs. (12) and (13) reduce to

sn;l;mðrÞ ¼
r

c
sec hn;l;m � 1
� �

; (26)

as already found in Eq. (4). From Eqs. (22) and (23)

b ¼ cos h � 1 (27)

and

b0 ¼ cos2 h � 1: (28)

B. Uniform sound speed gradient

Assuming a uniform sound speed gradient with lower

speed co,

cðzÞ ¼ coð1þ azÞ; (29)

the cycle time and distance are

tc ¼
1

aco
log

1þ sin ho

1� sin ho

� �
¼ 2

aco
atanh ðsin hoÞ

¼ 2

aco
asinh ðtan hoÞ; (30)

rc ¼ ð2=aÞ tan ho; (31)

where ho is measured at the low sound speed boundary. Sub-

stituting Eqs. (30) and (31) into Eq. (13) with cL¼ co we find

sn; 0 ; 0ðrÞ ¼
r

co

asinhðtan hoÞ
tan ho

� 1

� �

¼ � r

co

1
6

tan2 ho � 3
40

tan4 ho þ � � �
� �

� �r3 a2

24con2
: (32)

Note that the negative sign is because the chosen arbitrary da-

tum was the slowest speed so that a time advance appears as a

negative delay. If instead we had substituted in the complete

Eq. (12) there would have been an additional source and re-

ceiver term. The source term reduces, after some algebra, to

lrs
ts
rs
� tc

rc

� �
¼ lrs

1

cs
� 1

co

� �
� a2c2

o

6

r2
s

c3
s

� r2
c

c3
o

� �	 

(33)

and is demonstrably small compared with the rest of Eq.

(32). The values of b and b0 [Eqs. (22) and (23)] are

b ¼ �3 cos2 h
1� 7=10 tan2 h� 3=40 tan4 h

� �3; (34)

b0 ¼ �3

1þ 3=5 sin2 hþ 3=7 sin4 h
� �3 (35)

and both approximate to the familiar result. Figure 1 shows

that the line whose gradient is b is indeed close to being

straight.

C. Linear k2

The profile

k2 ¼ k2
oð1� azÞ; (36)

i.e.,

c2 ¼ c2
o=ð1� azÞ (37)

is included here because it is often used in modal analysis. It

can be shown that

tc ¼
4

aco
ðsin ho �

2

3
sin3 hoÞ; (38)

rc ¼ ð4=aÞ cos ho sin ho (39)

and

sn;0;0ðrÞ ¼
r

co
sec ho � 1� 2=3 tan ho sin hoð Þ

¼ � r

co

h2
o

6
þ � � �

� �
� �r3 a2

24con2
; (40)

FIG. 1. (Color online) Corrected cycle time (tc – rc=co) vs cycle distance rc

displayed on a log-log graph for the six profiles labeled as: isovelocity; linear

c; linear k2; cosh; parabolic k2; parabolic c2. Gradients correspond to the re-

spective b, so the straight line indicates that b is independent of launch angle.
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b ¼ �3

2� sec h
� �3; (41)

b0 ¼ �3

2� sec2 h
� �3; (42)

which, to first-order, is the same result as for linear c(z).

D. The cosh profile

It is well known (see Eq. 5.45 of Tolstoy and Clay,

1987) that the profile

c ¼ co cosh az (43)

leads to perfect focusing with

tc ¼
p

aco
(44)

and

rc ¼
p
a
: (45)

Inserting these in Eq. (13) we find sn,0,0¼ 0 (for all

focuses). Thus the sums in Eq. (7) reduce to either no terms

or a single term with the exponential term being unity, and

so the Fourier transform is either flat in frequency or does

not exist. According to Eqs. (22) and(23) both b and b0 are

infinite. This behavior is demonstrated by the vertical

fringes, shown in Fig. 2, calculated with ORCA (Westwood

et al., 1996).

Considering a ray trace up to some maximum launch

angle [with source on the axis the rays are nearly sine

waves, sinhðazÞ ¼ sinhðazTÞ � sinðaxÞ, where zT is the

turning point depth see Fig. 5.7 of Tolstoy and Clay,

1987] and picking a specific receiver depth we see that

for ranges near the focus there are no eigenrays at all

(unless the receiver happens to be at the focal depth) and

for ranges in between there is only one eigenray. This is

confirmed by the ray trace at the top of Fig. 2 (inset). In

other words calculation of travel time differences or

delays becomes meaningless in this case.

E. Parabolic k2 (over-curved)

The rather pathological behavior for the cosh profile

suggests that a slightly modified profile might be more inter-

esting. The profile c2 ¼ c2
oð1þ a2z2Þ, though identical to

cosh near z¼ 0, is slightly less tightly curved elsewhere

whereas the profile

c2 ¼ c2
o=ð1� a2z2Þ (46)

is slightly more tightly curved. We take the latter one which

can be written in terms of wavenumber k(z) as

k2 ¼ k2
oð1� a2z2Þ: (47)

The tighter curvature means that steep rays curve more than

they would in the cosh case and therefore tend to focus at a

shorter range. This is reflected in the cycle time and distance

which can be shown to be

tc ¼
p

aco
ð1þ cos2 hoÞ=2 (48)

and

rc ¼
p
a

cos ho; (49)

where ho is measured on the axis, cos ho ¼ cðzÞ=ðcTÞ
¼ K=kðzÞ, cT is the turning point velocity, and K is the hori-

zontal wavenumber. On substitution into Eq. (13) and defin-

ing the axial cycle distance as rc0 ¼ rcð0Þ such that

r=n ¼ rc ¼ rc0 cos ho we find

sn; 0 ; 0ðrÞ ¼
r

co

co tc

rc
� 1

� �
¼ r

co

ð1� cos hoÞ2

2 cos ho

¼ ðnrc0 � rÞ2

2conrc0

¼ n

2co

ðrc0 � rcÞ2

rc0

: (50)

For each n only certain ranges can contribute impulses

because of the limit on ho set by the maximum sound speed

cmax. These ranges, r, are bounded by nrc0 and nrc0 coshmax,

n > r=rc0 > nco=cmax (51)

and at each range there are limits on n given by

nmin ¼
r

rc0

; nmax ¼
rcmax

rc0co
:

Equations (22) and (23) give

FIG. 2. (Color online) Striations calculated by ORCA for the (two-sided)

cosh profile c ¼ co coshðazÞ. The superimposed and aligned ray trace (re-

ceiver depth shown by dashed line) confirms that there may be no arrivals

near the focus (when receiver depth is not equal to source complementary

depth) and elsewhere only one eigenray, making an exactly repeating pattern

once per ray cycle.
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b ¼ 2

sec h� 1
� 4

h2
!1; (52)

b0 ¼ 2

sec2 h� 1
� 2

tan2 h
!1; (53)

which both tend to infinity in the small angle limit.

Although the formula [Eq. (50)] is correct for this

profile it is slightly misleading because, as we shall see

in Sec. III G, a very slight change in the profile makes

a dramatic change in the formula for cycle distance, and

this in turn completely alters the behavior of Eq. (50).

For now we note that whatever the fringe shape may be

they tail off towards range zero, since b is large and

positive.

F. Parabolic c2 (under-curved)

An under-curved version of the cosh curve is

c2 ¼ c2
oð1þ a2z2Þ: (54)

The cycle time and distance integrals are, respectively, ellip-

tic integrals of the first and second kind. When evaluated at

the lower limit (z¼ 0) they are both zero, and at the upper

limit (the ray turning point) they both have their first argu-

ment equal to p=2 and so they are complete elliptic integrals

of the first and second kind, and series formulas are given by

Abramowitz and Stegun (1972) [Eqs. 17.3.11, 17.3.12].

tc ¼
2cT

ac2
o

Kð� tan2 hoÞ

¼ p
aco

sec hoð1� 1=4 tan2 ho þ 9=64 tan4 ho þ � � �Þ (55)

and

rc ¼
2

a
Eð� tan2 hoÞ ¼

p
a
ð1þ 1=4 tan2 ho � 3=64 tan4 ho þ � � �Þ:

(56)

Again defining the axial cycle distance rc0 ¼ rcð0Þ ¼ p=a
we find that now it is longer than for other ray angles. The

resulting time separation is

sn; 0 ; 0ðrÞ ¼
r

co

sec ho � 1� 1=4 tan2 ho ð1þ sec hoÞ þ 3=64 tan4 ho ð1þ 3 sec hoÞð Þ
ðrc=rc0Þ

� � r

co

tan4 ho

16 ðrc=rc0Þ
: (57)

But from Eq. (56)

tan2 ho

4
� ðrc � rc0Þ

rc0

(58)

so

sn;0;0ðrÞ � �
r

coðrc=rc0Þ
rc � rc0

rc0

� �2

¼ � r � nrc0ð Þ2

conrc0

; (59)

where for each n only certain ranges can contribute

impulses because of the limit on ho set by the maximum

sound speed cmax. Thus at each range there are limits on n
given by

n < r=rc0 < n 3þ ðcmax=coÞ2
� �

=4: (60)

This is similar behavior to the over-curved parabolic case,

but with fringes now tailing off on the far side of the foci.

The value of b is

b ¼ �8 cos2 h 1þ 1=4 tan2 h� 3=64 tan4 h � � �ð Þ
tan2 h 1� tan2 hþ � � �ð Þ : (61)

This is a special case of Eq. (82) (Sec. III H) with m¼ 1=2.
Similarly b0 is soluble but messy and can be seen as a special

case of Eq. (83) (Sec. III H) with m¼ 1=2,

b0 ¼ �4 cos2 h 1þ 1=2 tan2 h� 1=32 tan4 h � � �ð Þ
tan2 h 1� 1=2 tan2 hþ � � �ð Þ : (62)

G. General power law k 2 ¼ k 2
o ð1� ðazÞpÞ

The cycle time and distance integrals for the profile

k2 ¼ k2
o 1� ðazÞpð Þ (63)

(with 0 < p <1 and az < 1 for all z) can be written as

tc ¼
4k2m�2

o

xpa

� �ðko

K

k3dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

k2
o � k2

� �m ; (64)

rc ¼
4Kk2m�2

o

pa

� �ðko

K

kdkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

k2
o � k2

� �m; (65)

where

m ¼ 1� 1=p (66)

and K is the horizontal wavenumber. The variety of profiles

available is shown in Fig. 3.

These can be solved in terms of the hypergeometric

function 2F1(a, b; c; f) with fixed values for a, b, c. How-

ever, since the lower integral limit is always a ray turning

point (where k¼K) it vanishes, and the other limit is always
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2F1(a, b; c; 1) which simplifies to the ratio of some gamma

functions

2F1ða; b; c; 1Þ ¼ CðcÞCðc� a� bÞ
Cðc� aÞCðc� bÞ ; (67)

the result is

tc ¼
2
ffiffiffi
p
p

coa

Cð2� mÞ
Cð3=2� mÞ sin1�2m ho 1� ð2� 2mÞ

ð3� 2mÞ sin2 ho

� �
; (68)

rc ¼
2
ffiffiffi
p
p

a

Cð2� mÞ
Cð3=2� mÞ cos ho sin1�2m ho: (69)

We can see that these reproduce some of the earlier results,

namely linear and parabolic with p¼ 1, 2, (m¼ 0, 1=2). In fact

the behavior of the isovelocity profile is also reproduced

with p¼1, (m¼ 1) and H¼ 1=a. In general terms behaviors

of cycle time and distance both change over at p¼ 2,

(m¼ 1=2). For p> 2, (m> 1=2) they decrease from infinity

monotonically with angle, whereas for p< 2, (m< 1=2) they

increase from zero monotonically with angle.

The time separation in terms of angle is

sn; 0 ; 0ðrÞ ¼
r

co

co tc
rc
� 1

� �

¼ r

co
sec ho 1� ð2� 2mÞ

ð3� 2mÞ sin2 ho

� �
� 1

� 

� r

co
sin2 ho

ðm� 1=2Þ
ð3� 2mÞ þ sin4 ho

ð1þ 2mÞ
8 ð3� 2mÞ þ � � �

� 
:

(70)

To write this in terms of rc we need to substitute for ho.

Provided m is not too close to 1=2 the small angle approxi-

mation means that the cosine term in Eq. (69) can be

ignored. At exactly m¼ 1=2 we see why the solution for the

parabolic profile [Eqs. (49) and (50)] was “correct but

misleading”; for m< 1=2 the power of the sine term is posi-

tive and so the cycle distance starts at zero for small

angles, whereas for m> 1=2 the power is negative and the

cycle distance starts at infinity. Only at exactly m¼ 1=2 is it

proportional to cosine. So mathematically we make the

approximation

sin ho ¼
arc

2
ffiffiffi
p
p Cð3=2� mÞ

Cð2� mÞ

� �1=ð1�2mÞ
; (71)

but graphically we can plot the logs of the exact Eq. (70)

against the exact Eq. (69) as in Fig. 4. To first order the time

separation is

sn;0;0ðrÞ�
n

co

ðm� 1=2Þ
ð3�2mÞ

a

2
ffiffiffi
p
p Cð3=2� mÞ

Cð2� mÞ

� �2=ð1�2mÞ
rð3�2mÞ=ð1�2mÞ

c

� n�2=ð1�2mÞ

co

ðm� 1=2Þ
ð3�2mÞ

a

2
ffiffiffi
p
p Cð3=2� mÞ

Cð2�mÞ

� �2=ð1�2mÞ

� rð3�2mÞ=ð1�2mÞ (72)

Inserting this in Eq. (14) and taking logs, or directly

from Eqs. (22) and (23) we find that

b ¼ 3� 2m
2m� ð2� sec hÞ

� �
� 3� 2m

2m� 1

� �
¼ pþ 2

p� 2
; (73)

b0 ¼ 3� 2m
2m� ð2� sec2 hÞ

� �
� 3� 2m

2m� 1

� �
¼ pþ 2

p� 2
: (74)

The plot in Fig. 4 of the logs of the exact quantities in Eqs.

(72) and (69) confirms that these formulas behave well even

near p¼ 2. Thus it is possible to find b varying from 1 with

large p (quasi-isovelocity) to infinity with p¼ 2 (parabolic),

and from minus infinity, through �3 down to �1 with p¼ 0.

For p slightly greater than 2, b is large and positive (sloping

down toward range zero); for p slightly smaller than 2, b is

large and negative (sloping down toward infinite range). Some

FIG. 4. (Color online) Corrected cycle time vs cycle distance rc displayed

on a log-log graph for various values of the parameter p as shown in Fig. 3.

Constant b corresponds to a straight line where b ¼ ðpþ 2Þ=ðp� 2Þ.

FIG. 3. (Color online) Normalized sound speed profiles k2 ¼ k2
oð1� ðazÞpÞ

for various values of the parameter p for which solutions (i.e., tc, rc, b) are

available.
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examples of the striation patterns are shown in Fig. 5 having

used ORCA (Westwood et al., 1996). Notice the subtle differ-

ence between the p¼ 2 case (parabolic) and the cosh case

shown in Fig. 2.

H. General power law c2 ¼ c2
o ð1þ ðazÞpÞ

The solutions for the profile

c2 ¼ c2
o 1þ ðazÞpð Þ (75)

(with 0 < p <1 and az < 1 for all z) can also be written in

terms of hypergeometric series. The cycle time and distance

integrals can be written as

tc ¼
4cTc2m�2

o

pa

� �ðcT

co

dcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

T � c2
p

c2 � c2
o

� �m ; (76)

rc ¼
4c2m�2

o

pa

� �ðcT

co

c2dcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

T � c2
p

c2 � c2
o

� �m (77)

again with m ¼ 1� 1=p. Now

tc¼
2
ffiffiffi
p
p

coa

Cð2�mÞ
Cð3=2�mÞ sechotan1�2mho

�2F1 1�m;1=2;3=2�m;� tan2ho

� �
¼ 2

ffiffiffi
p
p

coa

Cð2�mÞ
Cð3=2�mÞ sechotan1�2mho

� 1� ð1�mÞ
ð3�2mÞ tan2hoþ

3ð1�mÞð2�mÞ
2ð3�2mÞð5�2mÞ tan4hoþ���

� �
;

(78)

rc¼
2
ffiffiffi
p
p

a

Cð2�mÞ
Cð3=2�mÞ tan1�2mho

�
�

2F1 1�m;1=2;3=2�m;� tan2ho

� �
þ ð1�mÞ
ð3=2�mÞtan2ho 2F1 2�m;1=2;5=2�m;�tan2ho

� �

¼2
ffiffiffi
p
p

a

Cð2�mÞ
Cð3=2�mÞ tan1�2mho

� 1þ ð1�mÞ
ð3�2mÞtan2ho�

ð1�mÞð2�mÞ
2ð3�2mÞð5�2mÞtan4hoþ���

� �
:

(79)

FIG. 5. (Color online) Striations calculated by ORCA for the power law c2 ¼ c2
o=ð1� ðazÞpÞ. (a) p¼ 0.5, (b) p¼ 2.0, and (c) p¼ 2.5. The fringes follow

b ¼ ðpþ 2Þ=ðp� 2Þ closely.
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Again these formulas reproduce results for p¼ 1, 2, 1,

although the p¼ 1 case is not shown in this paper. Note that

there is a sudden changeover from the power of the tangent

being positive to negative at exactly m¼ 1=2 with a misleading

parabolic solution [Eqs. (55) and (56)] in between. The time

separation is

sn; 0 ;0ðrÞ ¼
n

co
co tc � rcð Þ

¼ n

co
tan2ho

ðm� 1=2Þ
ð3� 2mÞ þOðtan4hoÞ

� 
2
ffiffiffi
p
p

a

Cð2� mÞ
Cð3=2� mÞ

� tan1�2mho

(80)

and we substitute the first-order expression for rc as

tanho¼
arc

2
ffiffiffi
p
p Cð3=2�mÞ

Cð2�mÞ

� �1=ð1�2mÞ
: (81)

which, to first-order, leads to the same expression as Eq.

(72). Equations (22) and (23) lead to

b ¼
cos2 h 1þ At2 � Bt4 þ Ct6 þ � � �

� �
1� 4Að Þ þ 8B� 1=2ð Þt2 þ �12Cþ B� 1=4Aþ 3=8ð Þt4

;

(82)

b0 ¼ cos2 h G2
2

G1G2 þ ð1þ t2Þ �2AðG1 þ G2Þ þ 4Bt2ðG1 þ 3G2Þ � 6Ct4ðG1 þ 5G2Þð Þ (83)

where

t ¼ tan h; A ¼ 1� m
3� 2m

; B ¼ A

2

2� m
5� 2m

� �
; C ¼ B

3� m
7� 2m

� �

G1 ¼ 1� At2 þ 3Bt4 � 5Ct6 þ � � �

G2 ¼ 1þ At2 � Bt4 þ Ct6 þ � � � :

Again Eqs. (82) and (83) are approximate to

b � 1

1� 4A
¼ 3� 2m

2m� 1

� �
¼ pþ 2

p� 2
: (84)

as long as p 6¼ 2.

IV. HYBRIDS

A. Bilinear duct

One can construct a sound channel from an upward

and a downward linear k2 duct as in Sec. III C, for exam-

ple, to make a bilinear duct (see e.g., Eq. 5.42 of Tolstoy

and Clay, 1987). However the only effect in this context is

that the values of tc and rc are doubled. Therefore after

substituting in Eq. (13) there is no effect and we find

again, b¼�3.

B. Asymmetric ducts

By the same reasoning as above one can construct sn,0,0

for asymmetric ducts by adding the values of tc or rc for the

upper and lower parts of the channel. As an example we take

Eqs. (30) and (31) and include them in Eq. (32), but now we

assume the depth scale a in the upper part and b in the lower

part. Note that the components of tc and rc are always

positive,

tc ¼
2

aj j co
asinhðtan hoÞ þ

2

bj j co
asinhðtan hoÞ; (85)

rc ¼
2

aj j tan ho þ
2

bj j tan ho: (86)

And, surprisingly, this makes absolutely no difference at all

to sn,0,0 and b since the a and b factor out in the ratio of tc=rc.

sn; 0 ; 0ðrÞ ¼
r

co

asinhðtan hoÞ
tan ho

� 1

� �
� �r3 a2

24con2
:

(87)

and so beta is still �3.

C. Combined refraction and reflection

Even with a fixed sound speed profile it is possible for

the shape of the fringes to change because at different ranges

different parts of the angle or wavenumber range dominate.

Figure 6 shows an example with upward refraction where, at

short range, boundary-reflected paths dominate leading to

b¼ 1, but at long range these die out leaving only refracted

paths with b¼�3.

Of course, the proportion of refracted rays to reflected

rays can also be altered by shifting the source or receiver.

Positioning the source and receiver at depths near a low

sound speed maximises the number of refracted ray paths;

conversely shifting either source or receiver near the maxi-

mum sound speed minimises the number of refracted paths.

Because the sound speed in the seabed is typically much

higher than that in water, the number of reflected paths is not

so sensitive to source or receiver depth. Consequently alter-

ing receiver depth may make b appear to flip from a reflect-

ing value like b¼ 1 to a refracting value like b¼�3. This

mechanism may be well responsible for the differences

found experimentally by Rouseff (2001) between his Figs.

3(a) and 3(b), where there was a mixed layer down to 12 m

and a steep thermocline below. The source was always at a

low sound speed at 50 m depth. When the receiver was at 10

m (high sound speed) only reflected paths are effective, lead-

ing to b¼ 1; when the receiver is at 50 m (low sound speed)
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there are many competing refracting paths which superim-

pose fringes with b��3. This is exactly what Rouseff

found experimentally. The interpretation of this author is

that his data, like Fig. 6 here, consist of two virtually inde-

pendent patterns superimposed. This is consistent with Rou-

seff’s interpretation of a distribution of waveguide

invariants.

D. Adding variability=randomness

One can take any of the analytical sound speed profiles

considered above and numerically calculate the effects of

adding some kind of randomness to the profile. From the ray

tracing point of view sudden changes in sound speed or its

first derivative will result in erratic behavior of the cycle dis-

tance and time. From the previous analysis, therefore, one

would expect the ensuing chaos to result in an absence of

clear fringes. Figure 7 shows that this is indeed what hap-

pens. Figure 7(a) is the control result with no randomness;

Fig. 7(b) has rather slow variation (the profile is defined by

only 21 points) which wipes out the fringes. The correspond-

ing profiles are shown in Fig. 8.

V. RELATIONSHIPS, INVARIANCE, AND RANGE
DEPENDENCE

The previous sections investigated the conditions for

fringes or striations to form and the dependence of the stria-

tion slopes (in frequency-range space) on sound speed profile.

No previous theory was invoked and no assumptions were

made other than the fringes having a Fourier transform rela-

tionship with the eigenray arrival times, i.e. the impulse

response. Chuprov’s (1985) original meaning of “invariance”

was that the quantity b itself was independent of frequency,

range, or source=receiver depths in a range-independent envi-

ronment (Chuprov, 1985, p. 94). All formulas derived here,

particularly Eqs. (73) and (74), show this and demonstrate

explicit dependence of b on the sound speed profile alone. A

number of authors have considered range invariance too

(D’Spain and Kuperman, 1999; Brown et al., 2005). So far

we have not commented on any range invariant properties

since the environments investigated in this paper were range-

independent. Nevertheless the logical starting point that x f(r)
should be constant for some separable function of range f
would still be a valid requirement for a fringe in a range-de-

pendent environment.

To make the connection with range-dependence we use

the general relationship derived in the Appendix (Eq. A-2)

between cycle time and cycle distance.

tc � rcK=x ¼ ð2=xÞ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � K2
p

dz ¼ 2

ð
sin h=cdz: (88)

The extreme right hand side is exactly Weston’s ray invari-

ant (Weston, 1959) that describes the relation between ray

angles and water depth as bathymetry or sound speed change

with range. As written in the middle of the equation, the inte-

gral is exactly the WKB phase integral (Morse and Fes-

hbach, 1953) which for a bound system, i.e. a reflecting or

refracting duct evaluates to (mþ 1=2)p, where m is the mode

number. Thus in the adiabatic approximation the mode num-

ber itself is an invariant; individual modes do not lose energy

to other modes and they stretch and shrink vertically to fit

changes in sound speed and bathymetry as they propagate

horizontally. Given that the right hand side is definitely an

invariant (i.e., a constant for each m or initial ray angle) in a

FIG. 6. (Color online) The transition from b¼ 1 (at short range) to b¼�3

(at long range) in a range-independent upward refracting environment using

ORCA.

FIG. 7. (Color online) The effect on striations of adding randomness to the

sound speed profile (see Fig. 8). (a) pure linear profile and clear fringes; (b)

21 piece-wise linear layers resulting in smudged fringes.
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range-dependent environment, we deduce that the left hand

side must also be invariant.

Comparing Eq. (88) with (19) we see that the eigenray

time difference (sn,l,m – sm,l,m) which is equal to

ðn� mÞðtc � rcK=xÞ must also be invariant with range-de-

pendent environments. However b0 is the differential of this

quantity with respect to rc [see Eq. (A-21)] and rc is not an

invariant, and neither is rc
2= drc=dKð Þ so the outcome is that

b0 is not generally invariant. Comparing Eq. (16) with Eq. (19)

we see that the absolute time sn,0,0 is also not an invariant.

Nevertheless it is possible to see how the striations will

be modified by a change in depth. Harrison and Siderius

(2003) showed that the full field, and explicitly the multipath

travel times in an (adiabatic) isovelocity range-dependent

environment obey

tn; l; m ¼ r=cþ 2nþ l zs=Hs þ m zr=Hrð Þ2

2 c

ð r

0

dr=H2

: (89)

Following the argument after Eq. (8) this means that fringes

occur when

xðr

0

dr=H2

¼ A ¼ const: (90)

Thus the otherwise straight fringes (proportional to r) might

be skewed by a dip in the seabed, for instance. Figure 9 shows

this effect for piece-wise linear bathymetry with five depths

of 100, 100, 120, 100, 100 m at 8 km intervals using RAM

(Collins, 1993). In Fig. 9(a) this distortion is shown in a plot

of x vs r, and the fringes are clear on both sides of the dip.

One could calculate the integral analytically in this case and

superimpose a calculated fringe shape. Instead we choose to

plot in Fig. 9(b) x vs H2
s

Ð r
0

dr=H2 and thus demonstrate the

proportionality of Eq. (90) through the straightness of the

fringes. The effectiveness of this correction is indeed striking.

VI. SOME IMPLICATIONS FOR REVERBERATION

Reverberation as a function of travel time consists of ech-

oes from scatterers at progressively greater range from source

and receiver, so at first sight one would expect striations, being

a propagation effect, to appear in the spectrum of broadband

reverberation. Experimentally striations are occasionally seen

in reverberation, but not always. Some possible reasons are

offered by this paper’s approach.

(1) Source=receiver collocation: Horizontal separation of

source and receiver will cause differences between out-

ward and return propagation fringes which may blur

reverberation striations, at least at short range.

(2) Smooth sound speed profile: To see striations the sound

speed must be a reasonably smooth function of depth (e.g.,

continuous second derivative, avoiding real or false

FIG. 8. Sound speed profiles for Fig. 7, pure linear (solid) and 21 piece-

wise linear layers (dashed, offset by 5 m=s).

FIG. 9. (Color online) Striations with variable water depth calculated by

RAM. Piece-wise linear bathymetry defined by five equally spaced depths

(100, 100, 120, 100, 100 m). Plot of frequency against (a) r, and (b)

H2
s

Ð r
0

dr=H2. Intensities have been range-corrected to enhance fringe visibility.
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caustics) so that the time separation of the multipath

impulses varies smoothly with angle (and therefore cycle

distance).

(3) Number of eigenrays: At least a few eigenrays of compa-

rable strength are required to make interference fringes.

If either source=receiver or scattering surface is near to

the highest sound speed in the duct, the number of eigen-

rays with refraction turning points will be small leaving

only steep rays that interact with both boundaries to

form fringes. There is also a scope for differences

between the outward and return paths.

VII. CONCLUSIONS

Striation patterns in the propagation spectrum can be

thought of as the result of range variation of the multipath

impulse response, and so they can be calculated from travel

times and therefore ray cycle times and cycle distances. The

waveguide invariant b quantifies the range variation of these

interference fringes and it has been determined for a number

of sound speed profiles including the power law of depth

c2ðzÞ ¼ c2
o=ð1� ðazÞpÞ and c2ðzÞ ¼ c2

oð1þ ðazÞpÞ. It was

shown that the cosh profile is a pathological case (which is

close to a parabolic profile or p¼ 2 in the above formulas)

which does not exhibit striation because the exact focusing

results in only a single eigenray arrival for all ranges and

depths and therefore no interference.

By considering absolute arrival times or time differen-

ces it was possible to derive a b for absolute phase and a b0

for relative phase in each of the sound speed profile cases.

Both can be written in terms of group and phase slownesses,

and most of the relative phase formulas are well known.

The approach shows the clear dependence of the waveguide

invariant b on path lengths rather than the corresponding eigen-

ray amplitudes. For this reason addition of randomness to the

sound speed profile leads to erratic behavior of the cycle time

and cycle distance with launch angle, and consequently striation

patterns become blurred. Although the propagation spectrum

and its interference patterns constitute part of the inputs for geo-

acoustic inversion, the value of b by itself is not directly related

to seabed properties—even if the seabed is layered.

The distorting effect of variable bathymetry on the

fringes was considered. In isovelocity water this distortion

can be eliminated by plotting the fringes against frequency

and H2
s

Ð r
0

dr0=H2 rather than r itself.
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APPENDIX A: SOME USEFUL RELATIONSHIPS

1. Exact relationships: single eigenray

By considering an element of a ray of length ds at graz-

ing angle h the horizontal and vertical excursions, dr, dz, and

the time increment, dt, are related, for angular frequency x
and local wavenumber k(z)¼x=c(z), by

kds ¼ xdt ¼ k cos hdr þ k sin hdz: (A1)

Integrating in z from one side of the duct to the other (z¼ 0,

H), or to a ray turning point, whichever is the sooner, invok-

ing Snell’s law, and multiplying by two we find a relation

between cycle time tc and cycle distance rc

xtc � Krc ¼ 2

ðH

0

k sin hdz ¼ 2

ðH

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz: (A2)

Alternatively integrating from the same side down to the

source or receiver depth zs,r we have

xts;r � Krs;r ¼
ðzs;r

0

k sin hdz ¼
ðzs;r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz; (A3)

or integrating over the depths of the unwrapped images

xtn � Kr ¼ 2n

ðH

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz 6

ðzs

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz

6

ðzr

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz: (A4)

Differentiating Eq. (A2) with respect to K and noting that

the differential of the right hand side is just –rc we find a

relationship between the derivatives of tc and rc,

dtc

dK
¼ K

x
drc

dK
(A5)

and

dtc

drc
¼ K

x
: (A6)

Similar relations hold for ts,r and rs,r. The quantities tc and rc

can be calculated through the following integrals across the

water column (or at least between ray turning points)

tc ¼
ð

2=ðcðzÞ sin hÞdz; (A7)

rc ¼ 2

ð
cot hdz: (A8)

2. Approximate relationships—eigenray pair

The arrival time difference between the mth and nth

eigenray (tm,l ,m – tn,l ,m) is estimated as follows, given that

their angular separation is small. Cycle times and cycle dis-

tances for m and n are labeled, respectively, with a super-

script “þ”, “–.” Travel times are

tm;l;m ¼ tþs þ mtþc þ tþr ; (A9)

tn;l;m ¼ t�s þ nt�c þ t�r : (A10)

Horizontal range is

r ¼ rþs þ mrþc þ rþr ; (A11)
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r ¼ r�s þ nr�c þ r�r : (A12)

Assuming that the difference between a “þ” and a “–” quan-

tity is accounted for by a slight change in angle dh (i.e.,

tþx ¼ t�x þ dhdtx=dh); we find, by subtracting Eqs. (A10)

from (A9)

tm;l;m � tn;l;m ¼ dh
dts

dh
þ ðm� nÞtc þ mdh

dtc

dh
þ dh

dtr

dh
:

(A13)

Subtracting Eqs. (A12) from (A11) we have

0 ¼ dh
drs

dh
þ ðm� nÞrc þ mdh

drc

dh
þ dh

drr

dh
: (A14)

Substituting for dh we find

tm;l;m � tn;l;m ¼ ðm� nÞ tc þ rc

dts

dh
þ m

dtc

dh
þ dtr

dh
drs

dh
þ m

drc

dh
þ drr

dh

0
B@

1
CA
(A15)

and invoking Eq. (A4) this reduces to

tm;l;m � tn;l;m ¼ ðm� nÞ tc þ rcK=xð Þ; (A16)

and by Eq. (A2) this is

tm;l;m � tn;l;m ¼ ðm� nÞ tc þ rcK=xð Þ

¼ 2ðm� nÞ=x
ðH

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz: (A17)

Using the same method it is easy to show that, for instance,

tn;þ1;þ1 � tn;þ1;�1 ¼ 2 tr � rrK=xð Þ

¼ 2=x
ðzr

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz: (A18)

Comparing Eqs. (A17) with (A18) we see that the time sepa-

ration of groups is always greater than the separation of

peaks within a group. For this reason the visible fringes, i.e.

those with the closest spacing in frequency, tend to depend

on the separation of the groups of four delta functions.

3. Formulas for beta

The quantity b is usually thought of as d(logx)=d(logr).

It was shown in Sec. II that for absolute phase fringes it can

be expressed as

� b ¼ @ logðsn;0;0Þ
@ logðrcÞ

¼ @ logðtc � rc=coÞ
@ logðrcÞ

and for relative phase fringes it is

� b ¼ @ logðtnþ1;0;0 � tn;0;0Þ
@ logðrcÞ

¼ @ logðtc � rcK=xÞ
@ logðrcÞ

:

Fringes of absolute phase:

�b ¼ @ logðtc � rc=coÞ
@ logðrcÞ

¼ rc

ðtc � rc=coÞ
dtc

drc
� 1

co

� �
(A19)

so, with no approximation and making use of Eq. (A6) we

have

b ¼ �rc

ðtc � rc=coÞ
K

x
� 1

co

� �
¼ � K=x� 1=co

ðtc=rc � 1=coÞ

¼ 1� cos h
ðcotc=rc � 1Þ ¼

So � Sp

Sg � So
: (A20)

where Sg, Sp are group and phase slownesses Sg¼ tc=rc,

Sp¼K=x, and So ¼ 1=co.

Relative phase fringes:

� b0 ¼ @ logðtc � rc K=xÞ
@ logðrcÞ

¼ �r2
c

ðx tc � rc KÞ

�
drc

dK
;

(A21)

but this can also be written in terms of slownesses using Eq.

(A6) since

� @Sp

@Sg
¼ � @ K=xð Þ

@ tc=rcð Þ ¼ �
r2

c

x rcdtc=dK � tcdrc=dKð Þ

¼ r2
c

ðxtc � rcKÞ

�
drc

dK
; (A22)

so

b0 ¼ � @Sp

@Sg
(A23)

as stated by Chuprov (1982) and D’Spain and Kuperman

(1999). By substituting Eq. (A2) in the denominator of Eq.

(A22) this can be reduced further to

b0 ¼ � r2
c

2
ÐH

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz

,
drc

dK
(A24)

as in Brown et al. (2005), Eq. (24), and differentiating rc we

have

b0 ¼ � r2
c

2

ðH

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2
p

dz

,ð H

0

k2dz

ðk2 � K2Þ3=2
: (A25)

Finally for modal propagation the right hand side of Eq.

(A2) is twice the WKB phase integral which is related to

the mode number m so this can be written as

b0 ¼ � r2
c

2pðmþ 1=2Þ

,ð H

0

k2dz

ðk2 � K2
mÞ

3=2
: (A26)
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