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On Adaptive Underwater Object Detection

David P. Williams

Abstract— A new algorithm for the detection of underwater
objects in sonar imagery is proposed. One particularly novel
component of the algorithm also detects the presence of, and
estimates the orientation of, sand ripples. The overall algorithm
is made extremely fast by employing a cascaded architecture
and by exploiting integral-image representations. As a result,
the method makes real-time detection of objects in streaming
sonar data collected by an autonomous underwater vehicle
(AUV) feasible. No training data is required because the
proposed method is adaptively tailored to the environmental
characteristics of the sensed data that is collected in situ. The
flexible yet rigorous approach also addresses and overcomes
five major limitations that plague the most popular detection
algorithms that are in common use. Moreover, the proposed
algorithm achieves superior performance across a variety of
seabed types on a large, challenging data set of real sonar data
collected at sea. Ways to exploit the findings and adapt AUV
surveys for optimized detection performance are also suggested.

I. INTRODUCTION

A. Motivation

The high-resolution imaging of underwater environments
afforded by sonar has proven particularly useful for the
detection of objects on the seabed. Thanks to breakthroughs
in marine robot technology, the sonar data used to address
this task is invariably collected by an autonomous underwater
vehicle (AUV).

Because of the inherent danger and time-sensitive nature
of such missions, the next urgent priority is to embed
intelligence in the AUV so that it can immediately react to
the data it collects. By adapting its survey route in situ and
efficiently allocating resources, the AUV can collect the most
informative data for the task at hand while simultaneously
reducing costs.

To achieve this goal, two major obstacles must be over-
come. First, an algorithm is needed that can perform ro-
bust object detection in near real-time onboard an AUV
with limited processing capabilities. The existing detection
algorithms in widespread use suffer from several limitations
that preclude this possibility. Second, a plan is needed for
specifying how the information gleaned from the detection
results can be exploited to intelligently adapt the AUV route.

This work addresses both challenges, and in the process,
removes two of the most significant barriers preventing fully
autonomous detection missions using an AUV.

B. Contribution and Relevance of Paper

The principal contribution of this paper is a new algorithm
for the detection of underwater objects in sonar imagery. The
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flexible yet rigorous approach overcomes several limitations
of existing detection algorithms that are in widespread use.
Additionally, the algorithm’s cascaded architecture ensures
that it can be executed very quickly, making real-time
detection in streaming sonar imagery collected onboard an
AUV during a survey feasible.

An auxiliary contribution of the work is a novel application
of the integral-image formulation for the detection of sand
ripples and the estimation of their orientation. This ripple
detection algorithm also provides insight into how AUV
routes can be adapted in situ to optimize data collection and
mitigate the concealment effects of sand ripples on object
detection. As such, this paper advances the field toward intel-
ligent, adaptive, completely autonomous underwater surveys
without any “human in the loop.”

The ideas in this work can also be exploited to ameliorate
the problem of “data deluge” and reduce operator fatigue [1],
and to dramatically speed up mission times (e.g., by elimi-
nating the need to redeploy the AUV to collect additional or
better data).

Although the primary focus of the work here is for the
task of generic object detection, the algorithms can also be
used for a wide range of other marine robotics applications,
including habitat mapping [2], seabed classification [3],
archaeology [4], and pipeline monitoring [5]. The methods
proposed are also relevant to other fields that employ airborne
sensors for image-processing-based tasks. For example, the
fast detection framework can be exploited for ground-based
target-detection [6], while the ripple detection algorithm
would be useful for oil exploration applications that require
the detection of sand dunes [7].

C. Organization of Paper

The remainder of this paper is organized as follows. Sec. II
notes the limitations of existing underwater object detection
algorithms and outlines an overview of the proposed ap-
proach. The three stages of the proposed cascaded detection
algorithm — shadow detection, ripple detection, and echo
detection — are described in Sec. III, Sec. IV, and Sec. V,
respectively. Experimental results on real, measured sonar
data collected at sea are presented in Sec. VI. A discussion
outlining how the detection results can be exploited for the in
situ adaptation of AUV survey routes is provided in Sec. VII.
Concluding remarks are made in Sec. VIII.

II. UNDERWATER OBJECT DETECTION

A. Limitations of Existing Detection Algorithms

Currently, after sonar data has been collected, an object
detection algorithm is applied post-mission. Typically, these
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detection algorithms search for highlight-shadow patterns
characteristic of objects [8]–[12]. The highlight is the result
of the acoustic echo from the object itself, while the shadow
that is cast is due to the geometry between the object (and
specifically its height above the seafloor) and the grazing
angle of the transmitted signal.

However, existing object detection algorithms suffer from
five major limitations. First, detection algorithms invariably
assume, incorrectly, that the image quality is uniformly
excellent across the entire image. Second, many detection
algorithms do not sufficiently exploit the range-dependent
nature of object echoes and shadows that can be predicted
based on physics-based propagation models and geometrical
considerations, respectively. Third, most detection algorithms
are not tailored to the environmental conditions where the
surveying occurs, relying instead on training data from a
different site. Fourth, the detection threshold of a detector
is, in general, an arbitrary score with no physical meaning.
Fifth, most detection algorithms rely on matched-filtering-
type approaches that employ discrete Fourier transforms and
preclude the possibility of “streaming” real-time detection.

B. Overview of Proposed Algorithm

The proposed object detection algorithm is composed of
three major stages: shadow detection, ripple detection, and
echo detection. We first briefly provide an overview of
the motivations and general philosophy used to create the
algorithm.

The overall objective is to create a robust algorithm that
will reliably detect underwater objects of interest. However,
the algorithm must also be fast to permit real-time streaming
detection onboard an AUV equipped with limited processing
capabilities. Since no human intervention is allowed, the
algorithm must be flexible enough to sense and adapt to
changing environmental conditions from the data collected in
situ. At the same time, the proposed method should directly
address and overcome the limitations that plague existing
detection algorithms.

To satisfy these requirements, extensive domain-specific
knowledge we possess about the problem is exploited.
Emphasis is also placed on tailoring the algorithm, where
possible, to the fundamental underlying physics and geom-
etry of the application. The result is a hybrid of rigor and
flexibility. Additionally, the cascaded algorithm architecture
is designed to minimize computational costs by operating on
progressively smaller portions of the image at each stage.

The following sections will describe — briefly, due to
space constraints — each step of the detection algorithm
that resulted from these considerations. But the algorithm
description will be supplemented by figures illustrating the
effects of each step on one particularly challenging sonar
image, shown in Fig. 1(a). (For reference, the left portion of
the image is characterized by sand ripples, while the right
portion is flat sandy seabed. Seven objects of interest are
present in the image.)

III. SHADOW DETECTION

The first stage of the proposed object detection algorithm
establishes locations of shadows in the image. To do so,
the sonar image is first converted to an integral-image
representation. This image is then used to quickly estimate
a background map and a shadow map, the comparison of
which provides locations of shadows (consistent with objects
of interest) that are examined further in the second stage of
the algorithm.

A. Integral Image

An integral image [13] is an image representation that
allows for very fast computation of rectangular, Haar-like
features at any scale or location in constant time. Such
rectangular features will be invaluable for assessing certain
distinguishing characteristics of objects, such as echo and
shadow levels.

The use of an integral-image representation is also a key
that makes streaming object detection possible. In fact, the
integral-image approach is particularly well-suited for tasks
with streaming sonar data because the construction of an
integral image exactly mimics the manner in which the data
is collected, namely in a row-wise fashion.

Thus, rather than operating on the pixel-based system of
the sonar image, we immediately transform to an integral-
image system.1 The integral-image representation corre-
sponding to the sonar image in Fig. 1(a) is shown in Fig. 1(b).

B. Background Estimation

The reverberation level of the seabed is a strong function
of its composition (e.g., soft mud or hard sand), so assuming
a pre-defined threshold to determine what constitutes back-
ground levels is not reliable. In fact, natural seabed variations
can cause the reverberation level to vary substantially at
a given site or even within the same image. Therefore,
we estimate the background in the image using the local
characteristics of the seabed.

Specifically, the background score associated with a pixel
is taken to be the mean pixel value of a fixed-size rectangular
template centered around the point, computed quickly by
exploiting the integral image. The resulting background map
from using the integral image in Fig. 1(b) is shown in
Fig. 1(c).

The flexibility afforded by tailoring the estimation to the
measured in situ data makes the method robust and suc-
cessful in different environments. This adaptive estimation
also eliminates the possibility of training data mismatch [14],
since no training data is used.

C. Shadow Estimation

Any object that rises above the seafloor will necessarily
cast a shadow (except in pathological cases that can be
ignored here). Moreover, the length of the shadow that is
cast will be a function of the relative positions of the object
and the sonar.

1In fact, one need not ever form the full sonar image onboard the AUV
since the integral-image representation contains equivalent information.
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(a) SAS image (b) Integral image

(c) Background map (d) Shadow map

Fig. 1. Detection algorithm, part 1 of 3. The original sonar image (a) is converted into its equivalent integral-image representation (b), which is then used
to estimate a background map (c) and a shadow map (d).

For an AUV operating at an altitude a above the seafloor,
and for an object of height h sitting on the seafloor at a
range r away from the AUV, simple geometry dictates that
the length of the shadow that will be cast by the object will
be s = hr/(a− h). The value of h is set to the minimum
height of an object of interest, based on extensive domain
knowledge; a is measured directly onboard the AUV.

Therefore, the shadow estimation is refined to instead be a
search for shadows of an appropriate length (i.e., that could
have been produced by objects of interest) by exploiting this
geometry.

The shadow score at a pixel is taken to be the mean pixel
value over a range-dependent rectangle centered around the
point, again calculated quickly thanks to the integral-image
representation. The resulting shadow map from using the
integral image in Fig. 1(b) is shown in Fig. 1(d).

It should be noted that because of the integral-image
representation, the range-dependent nature of the template
causes no additional computational complexity. In contrast,
existing detection algorithms that employ matched-filtering-
type methods and rely on discrete Fourier transforms cannot
enjoy this range-dependent flexibility (and therefore ignore
the inviolable geometry of the problem).

D. Addressing Poor Image Quality
It is commonly assumed that all sonar images are of good

quality everywhere, but that is often not the case with real
sonar data collected at sea [15]. In particular, image quality
often degrades significantly at long range where the effects of

multipath manifest [16], or where the more stringent motion
correction requirements for successful SAS image formation
cannot be satisfied [17].

In this poor image quality regime, shadow purity is dimin-
ished (i.e., shadows “fill in”), making shadows an unreliable
clue for object detection. Therefore, in the proposed algo-
rithm, all regions in the image where the image quality is
poor are automatically retained to be examined further in the
subsequent stages.

The image quality is quantified by the the peak correlation
of consecutive ping returns, termed the coherence, as a
function of range, since this measure is directly related to
the signal-to-noise ratio (SNR) of an image [18].

E. Region of Interest Determination (Stage I)

Any pixel for which the shadow map value is sufficiently
lower than the corresponding background map value is de-
clared to be a shadow that will receive further investigation.

This test is the first data-reduction stage of the detection
cascade. It achieves a large-scale reduction in pixels that
must be examined further — in practice, more than 90%
of the pixels are usually removed in this step — thereby
greatly reducing computation loads of all subsequent stages.

The binary result of the background and shadow map com-
parison is shown in Fig. 2(a), where white pixels correspond
to regions of potential alarms that will be investigated further.
The vertical stripe of white at longer range is due to poor
image quality at those ranges.
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(a) Potential alarms before ripple detection (b) Alarms in location-orientation space

(c) Alarm density in location-orientation space (d) Potential alarms after ripple detection

Fig. 2. Detection algorithm, part 2 of 3. The result of the background map and shadow map comparison produces a map of potential alarms (a). A location
and orientation feature are then extracted for each alarm (b), from which density estimation is performed (c) to determine the presence and orientation of
sand ripples. Alarms deemed to be sand ripples are removed from further consideration (d).

IV. RIPPLE DETECTION

The second stage of the proposed object detection algo-
rithm detects ripples in the sonar image. A feature extraction
step maps each shadow to a point in a new space in which
ripples, characterized by a high density of elongated shad-
ows that are oriented similarly, can be efficiently detected.
Locations that do not belong to ripples are examined further
in the third stage of the algorithm.

A. Overview

Sand ripples are one of the most confounding factors
and frequent sources of false alarms for underwater object
detection because they produce highlight-shadow patterns —
the sizes of which will depend on the wavelength and range
of the ripples — characteristic of some objects. Additionally,
when objects lie in ripple fields, the echoes of the objects
and ripples blend together, as do their respective shadows,
making detection challenging.

Since the overall objective here is to detect objects, the rip-
ple detection algorithm we propose is more accurately called
a nuisance ripple detection algorithm. Rather than attempting
to detect all sand ripples in an image, the algorithm instead
attempts to detect only those ripples that affect our ability to

detect objects, i.e., nuisance ripples.2

B. Motivation

To overcome the challenges posed by sand ripples, we
develop a principled ripple detection algorithm that is tai-
lored both to the fundamental characteristics that define sand
ripples and the underlying physics that creates them.

Sand ripples are formed when currents or waves flow in
a particular direction [19]. Because of this mechanism by
which they are created, ripples tend to exist in large fields,
rather than as individual instantiations.

Although ripples will be characterized by a dominant
orientation (dictated by the direction of flow), considerable
variability will also exist. Ripples will in fact span a range
of orientations, with varying amplitudes and periods as well.

Additionally, the relative geometry between the sonar and
the mound of sand that defines the ripple means that the
shadows that are cast by the ripples will be elongated along
the direction of the ripple crest (or trough) [20].

These three fundamental physical characteristics of rip-
ples, which can be observed in Fig. 1(a), will be exploited
in the ensuing stages of the ripple-detection algorithm.

2In order to instead detect all ripples, such as for environmental assess-
ment purposes, the template used in the shadow map determination should
be made range-independent.
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C. Feature Extraction

To efficiently search for a high density of elongated
shadows that are oriented similarly, each discrete shadow in
the binary shadow map (or potential-alarm map, cf. Fig. 2(a))
is mapped into a new feature space in R2 in which it is easy
to detect such characteristics.

Specifically, the centroid and orientation are calculated for
each discrete shadow (i.e., each connected region, or “blob”)
in the potential-alarm map. The orientation of a shadow is
obtained by fitting an ellipse to the shadow area. The centroid
is converted to a location feature that is simply the distance
of the centroid to a fixed reference location in the mission
(or image).

The result of this feature extraction process that transforms
the shadows in sonar-image space in Fig. 2(a) to location-
orientation space is shown in Fig. 2(b).

D. Density Estimation

By discretizing this new feature space and treating it as a
two-dimensional “image,” the corresponding integral image
can be computed readily. The integral-image formulation can
then be exploited to quickly perform density estimation in
this space.

Specifically, the mean number of discrete shadows in
a rectangular area about a given location is used as the
shadow density estimate. The size of the rectangle used in
the calculation is chosen to respect the physical proximity
and orientation variability of the underlying mechanisms that
help define ripple fields.

The resulting density estimate is shown in Fig. 2(c).
If the maximum density is above a predefined threshold,

sand ripples are declared to be present in the image. This
threshold effectively defines our concept of a ripple field,
by establishing the minimum density of potential alarms at
similar orientations needed to declare a ripple field.

The principal (center) orientation of the ripple field is
estimated to be the orientation at which the density achieves
a maximum. The ripple field is deemed to span a set of
orientations, with the minimum and maximum orientations
of that span set to the orientations at which the density
drops to half the maximum density. That is, the span is
adaptively estimated automatically based on the evidence that
is provided by the data itself.

For the image related to Fig. 2(c), the principal ripple
orientation was deemed to be θr = 73◦, spanning the
orientations Θr = [57◦, 86◦].

E. Region of Interest Determination (Stage II)

If sand ripples have been detected, those potential alarms
for which the orientation is within the estimated span of rip-
ple orientations, Θr, are removed from further consideration.

The result of the nuisance ripple detection stage is shown
in Fig. 2(d), from which it can be observed that the ripples
have largely been removed from further consideration.

This test is the second data-reduction stage of the detection
cascade, and further reduces the number of pixels that must
be examined further.

V. ECHO DETECTION

The third stage of the proposed object detection algorithm
estimates the signal strength, or echo level, of the remaining
alarms. A range-dependent correction term to counteract
natural propagation loss is also applied before determining
the final map of object alarms.

A. Echo Estimation

The echo score is calculated for the remaining potential
alarms by once again exploiting the integral image. Specif-
ically, the mean pixel value in a rectangular area about a
given location3 is used as the echo score.

The size of the rectangle is related to the smallest object
of interest. By using a generic rectangular template, a wide
range of objects can be detected. In contrast, a template
specially tailored to a particular object would not generalize
well, and therefore, would fail to detect new but related
objects.

B. Echo-Loss Correction

The incident angle of the sonar signal is closer to normal
at shorter ranges, so the seabed will reflect back more energy
to the sonar receiver on the AUV. Natural propagation loss
means that the sonar returns from the seabed at longer ranges
will be weaker. As a result, the SNR of an object at short
range will necessarily be lower than the SNR of the same
object at longer range. After standard range-normalization is
performed to achieve approximately range-independent pixel
levels in the sonar image, the echoes at shorter ranges will
effectively be decreased.

To eliminate this undesirable natural phenomenon, which
would make objects at shorter range more difficult to detect,
a rigorous range-dependent correction term that is based on
the well-known propagation loss equation [21] is applied.
The echo correction that we add to the echo score of a
potential alarm at range r is ε(r) = 20 log10(r0/r), where
r0 is a reference range set to the nominal maximum range
of the sonar (here, r0 = 150 m).

The resulting echo map is shown in Fig. 3(a), where it can
be observed that the calculations are performed only at the
potential alarm locations, which again saves computation.

C. Region of Interest Determination (Stage III)

The echo correction term ensures that the echo score of
a given object will be approximately range independent. In
turn, this permits the use of a single detection threshold for
all ranges.

The echo scores are directly related to the signal strength
of the objects, which means that setting a detection threshold
can be determined rigorously. Specifically, the threshold can
be set such that we wish to detect any object for which the
signal strength exceeds a given level.

In contrast, other detection algorithms are forced to set an
arbitrary threshold value because the detection score, usually

3A shift is applied so the echo calculation is performed over the area
preceding the shadow location, since an object that casts a shadow will
necessarily be located closer to the sonar.
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(a) Echo map (b) Potential alarms after echo detection

Fig. 3. Detection algorithm, part 3 of 3. A threshold is applied to the echo map (a) to generate the final areas of potential alarms (b), which are
subsequently converted into discrete detections.

Fig. 4. Final detection map. White circles indicate false alarms, while red
circles mark correct object detections. The size of each circle is proportional
to the alarm’s detection score.

related to how well an area of the image matches a highlight-
shadow pattern characteristic of objects, cannot be equated
to a well-defined, tangible, physical quantity.

The third and final stage of the detection cascade removes
those areas for which the echo score is below the desired
signal strength threshold. The potential alarms that remain
after this stage are shown in Fig. 3(b).

D. Final Detection Map

The final step of the detection algorithm is to convert
the areas of potential alarms to a list of discrete alarms. To
do this, the location of the maximum echo score — which
subsequently is treated as that alarm’s detection score —
within each potential alarm region is treated as the alarm
location.

To present this result visually for our example image, we
plot the alarm locations overlaid on the original sonar image,
in Fig. 4. It can be seen that all 7 objects were successfully
detected (and 6 of the 7 objects were detected while incurring
zero false alarms) and 5 false alarms were recorded.

For purposes of comparison, application of a widely used
method [12] that employs a matched-filtering-type procedure,
on this image resulted in 112 false alarms — most generated
by the sand ripples — and also failed to detect 3 objects (two
in the ripple field and one at long range where the image
quality is poor).

VI. EXPERIMENTAL RESULTS
A. Data Sets

In April-May 2008, the NATO Undersea Research Centre
(NURC) conducted the Colossus II sea trial in the Baltic
Sea off the coast of Latvia. During this trial, high-resolution
sonar data was collected by the MUSCLE AUV, which is
equipped with a 300 kHz sonar with a 60 kHz bandwidth
that can achieve image resolution of approximately 3 cm.

At each of three sites with different seabed characteristics,
one in Rı̄ga Bay (“Area A”) and two off the coast of Liepāja
(“Area B” and “Area C”), a set of objects (of different shapes
and characteristics) were deployed and a series of AUV
surveys was performed over the area. Across the three sites,
the average number of object looks was 150 and the average
area of seabed surveyed was 2.24 km2.

To demonstrate the promise of the proposed detection
algorithm, we evaluated its performance on these data sets.
For purposes of comparison, we also considered the standard
detection algorithm used in [12], since slight variations of
this popular method are in widespread use. (This comparison
is also fair because neither of the methods exploit or require
any training data.) This standard (“old”) method, which suf-
fers from the various limitations noted previously, performs
detection by correlating a template, consisting of a generic
highlight-shadow pattern characteristic of objects of interest,
with the sonar images.

B. General Results

The resulting detection performance in the three areas is
shown in Fig. 5 in terms of receiver operating characteristic
(ROC) curves, generated by varying the final detection
threshold. It can be seen that the proposed method achieves
superior performance to the popular existing method.

The gain in performance at Area A, which was char-
acterized by soft mud, can be attributed to the proposed
algorithm’s ability to detect objects with weaker responses.
In particular, the echo correction term ensures that objects
at short range will be detected at the same rate (and at
comparable detection scores) as objects at long range.

At Area B, the worse false alarm rate of the the old method
can be attributed to its inability to reject ripples; the worse
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(a) Area A: muddy seabed (b) Area B: boulders and sand ripples (c) Area C: hard-packed sand

Fig. 5. Detection performance for the three areas in terms of ROC curves. The seabed characteristics of each data set are summarized in the captions.

detection rate is due to its difficulty of detecting objects
where the image quality is poor or in sand ripples (since the
template correlation-score is skewed by background ripples).

The gain in performance at Area C, which was character-
ized by hard-packed sand, is because the proposed algorithm
bases its initial search on shadows rather than strong echoes.
Naturally occurring variation on the seabed that can generate
strong echoes is common in hard-packed sand; such areas,
even if lacking a strong shadow, then necessarily generate
high detection scores using the old method, since the con-
tribution of large-valued highlight pixels overwhelms that of
shadow pixels in the template score.

To highlight the appealing data-reduction aspect of the
cascaded detection approach, Table I presents the average
fraction of an image that is passed on to the echo determi-
nation stage of the proposed algorithm. As can be seen from
the table, significant computational savings are obtained by
employing the cascaded approach.

TABLE I
FRACTION OF IMAGE PASSED ON TO ECHO DETERMINATION STAGE

(MEAN ± ONE STANDARD DEVIATION, ACROSS DATA SET).

DATA SET µ± σ
AREA A 0.0416± 0.0591
AREA B 0.1580± 0.1159
AREA C 0.0074± 0.0127

It should also be reiterated that the proposed algorithm
can be executed very quickly such that streaming real-time
detection onboard an AUV would be feasible.

C. Ripple-Orientation Dependence

Unlike in Areas A and C, the proposed algorithm was
unable to achieve (nearly) perfect detection in Area B. To
investigate the reason for this, we examine the detection
performance (of the objects located in the ripple field)
as a function of the AUV survey direction. (During the
mission, the AUV surveyed in a “lawnmower” fashion in
four principal directions; the sonar look-direction (i.e., the

Fig. 6. Detection performance for objects in sand ripples in Area B, as
a function of AUV survey direction (legend indicates sonar look-direction).
Sand ripples in the area were oriented at 73◦/253◦.

range direction) is orthogonal to the direction in which the
AUV travels.)

The ROC curves when the performance is presented in
this manner is shown in Fig. 6. As can be seen, there is a
strong orientation dependence on the detection performance.
For example, the results indicate that for a false alarm rate
of 1000 false alarms per km2, the probability of detection
would be 0.67 if the survey was executed with a 0◦ look-
direction, but it would be only 0.08 if the survey was
executed with a 90◦ look-direction.

It is worth noting that by examining the results of the rip-
ple detection stage, it can be established that the approximate
principal ripple angle in this area was 73◦ (visual verification
of the images confirms the accuracy of the estimation; e.g.,
the image in Fig. 1(a) was from this area).

This insight reveals that the further the sonar look-
direction was from the ripple orientation, the better the
detection performance was, with this trend holding for all
four survey directions in Fig. 6. (Therefore, a survey at
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163◦/343◦ would have been optimal.)
We hypothesize that this phenomenon arises because when

the ripple orientation is similar to the look-direction of the
sonar, the shadows associated with ripples appear nearly
horizontal, similar to the shadows cast by objects of interest.
When an object is present, its shadow more naturally melds
with those of ripples, making detection difficult. When the
sonar look-direction is nearly orthogonal to the ripples,
ripples produce strong vertical bands of shadow that can be
easily rejected with the ripple detector.

VII. DISCUSSION

The standard AUV survey plan used in practice is to
execute a series of parallel tracks at one orientation, followed
by a second series of tracks at an orientation orthogonal
to the first. This “cross-hatching” ensures that each seabed
location in the area of interest is observed at least twice.
However, the inflexibility of this rigid pre-planned approach
introduces severe inefficiencies into the standard sonar data
collection procedure.

With a near real-time detection algorithm running onboard
the AUV, the survey route can instead be adapted in situ
based on the data that is collected. The experimental results
from Sec. VI provide insight for how this adaptation should
be performed.

It was observed in Areas A and C — which were char-
acterized by flat, benign seabed — that a single view was
sufficient to detect virtually all objects of interest. Therefore,
to save resources, cross-hatching should not be performed in
such environments.

To optimize detection performance in areas with sand
ripples, rather than blindly executing a second survey in a
direction orthogonal to the first, one should instead execute
the second survey such that the look-direction of the sonar
is orthogonal to the estimated direction of the sand ripples.

The plan for each of the above scenarios — flat seabed
or seabed with ripples — relies on an assessment of the
environment, which is derived from the results of the ripple
detection algorithm. Therefore, the near real-time nature of
the detection (and ripple detection) algorithm is the key that
would permit this intelligent in situ survey-route adaptation.

VIII. CONCLUSION

The overarching idea of the proposed detection algorithm
was to overcome the limitations of the most popular existing
detection algorithms, while also striving to allow streaming,
near real-time detection.

A balance of rigor and flexibility was embedded in the
detection algorithm by exploiting definitions (shadows, ripple
fields), underlying physics (range-dependent echo loss) and
geometry (range-dependent shadow lengths), incorporating
extensive domain-specific knowledge (object sizes and signal
strengths for template sizes and thresholds), and adapting
to in situ environmental and data conditions (background
reverberation level, sand ripples, image quality).

This work also provides the first quantitative evidence,
based on real data or otherwise, that the relative orientation

of sand ripples has a dramatic impact on (non-buried) object
detection performance. A suggestion for exploiting this in-
sight to optimize data collection was also provided. A future
sea trial will test this proposal using the MUSCLE AUV,
to perform real-time detection and survey route adaptation,
based on sand ripples, in a completely autonomous manner.
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