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Abstract–Blainville’s beaked whale (Mesoplodon densirostris) 
buzz clicks have been found to have characteristics that can vary 
significantly.  While we have not succeeded to classify them 
individually, we find that their spectrum is very similar from one 
click to the next.  In previous work, we showed that a multi-
hypothesis tracker can be used to associate these clicks, and 
subsequently to classify the click sequence.  This paper describes 
further tracker enhancements and shows improved performance 
results.  Further, we find that the property of slowly varying 
buzz clicks spectrum is also true for other odontocete species, 
and apply our multi-hypothesis tracking algorithm to such data.  

Index terms–Target tracking, data association, classification, 
odontocete buzzes  

I. INTRODUCTION 

Toothed whales are known to click to find prey.  The 
characteristics of the clicks and repetition rates vary from one 
species to another, but clicks are fairly regular during the 
phase in which the animals are looking for prey.  Once they 
have found prey the repetition rate of the clicks increases; 
these sequences are called buzzes.  Previous work has been 
done to detect and classify Blainville’s beaked whale 
(Mesoplodon densirostris) clicks automatically, and 
subsequently to determine how many animals are present [1].  
A transient detector using the Page test [2] has been developed 
to extract clicks which are characterized by click time, click 
duration, click amplitude and spectral information.  A 
probability distribution over species is assigned to each click, 
based on its spectral information.  The estimation of the 
number of animals is performed using a feature-aided multi-
hypothesis tracking (MHT) algorithm to associate clicks that 
originate from the same animal.  The association is based on 
the assumptions of slowly-varying click amplitude, Inter-Click 
Interval (ICI) and utilizes species classification information. 

The Blainville’s beaked whale buzz clicks are known to 
differ from the regular ones [3].  Some of them have the 
characteristics described in [3], but others have characteristics 
that can significantly differ [4].  While we did not succeed to 
classify these clicks individually because of the variation of 
their characteristics, we found that their spectrum is very 
similar from one click to the next [4].  Thus, the multi-
hypothesis tracking algorithm was modified to use this 
property of slowly varying spectrum of buzz clicks to permit 
their association as a sequence [5].  Under this scheme, buzz 
classification follows automatic tracking of click sequences.  

It is common to have some missing click detections in a 
buzz, leading to track fragmentation.  In this work, we 
enhance the processing scheme in [5] by allowing for missed 
detections, thus reducing the fragmentation of buzz tracks.  
The property of slowly varying spectrum of buzz clicks 
appears to be true for other species; thus, we apply our multi-
hypothesis tracking algorithm to such data to validate the 
feasibility of click association followed by buzz classification 
in more general settings.  

Section 2 provides some background on multi-hypothesis 
tracking (MHT), while section 3 describes the specific 
instantiation of the MHT functionality to click association.  
Section 4 provides a comparison of previously obtained results 
[5] with the results we obtain with our enhanced tracker for a 
Blainville’s beaked whale dataset.  Section 5 provides results 
for some other species.  Conclusion and future work are given 
in section 6.  

 

II. MULTI-HYPOTHESIS TRACKING 

The multi-hypothesis tracker that forms the basis for the 
click tracker utilized in this paper is described in [6]; the 
algorithm was originally designed for active-sonar tracking, 
but its flexibility allows for appropriate modification to the 
click-association problem. 

We illustrate the basic track-oriented multi-hypothesis 
tracking (MHT) approach with a simple example, shown in 
figure 1. 
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Figure 1: A simple MHT example. 
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The example assumes that two tracks, T1 and T2, have 
already been resolved.  That is, prior data association 
decisions have led to a single global hypothesis that includes 
two tracks.  Next, assume that a scan of data is received with 
two measurements, R1 and R2.  Assume further that both R1 
and R2 can feasibly be associated with T1, while only R1 can 
feasibly be associated with T2.  This leads to a number of 
local (or track) hypotheses.  Note that this set of hypotheses 
includes track continuation in the absence of a measurement 
(often denoted a track coast), as well as new-track hypotheses.  
A second scan of data includes a single measurement R3.  We 
assume that R3 provides feasible updates to track hypotheses 
that include R2, as well as spawning a new-track hypothesis.  
Note that we assume that tracks are terminated after two 
coasts, indicated by the red icons in figure 1. 

While the example includes a number of track hypotheses, 
it is important to note that each global hypothesis provide a 
compete set of data-association decisions that account for all 
resolved tracks and all sensor measurements.  The number of 
global hypotheses is large, even for this simple example; the 
power of the track-oriented approach is that we do not require 
an explicit enumeration of global hypotheses. 

Each track hypothesis has an associated log-likelihood 
score that reflects track initiation and termination penalties as 
well as nonlinear filtering scoring; in the case of linear 
Gaussian systems, this scoring is based on the filter 
innovations.  The vector c includes the track-hypothesis 
scores.  We are interested in the optimal global hypothesis, 
which amounts to identifying a vector x such that the global 
log-likelihood is maximized: the maximum likelihood solution.  
Having identified this solution through a two-stage relaxation 
approach based on linear programming or Lagrangian 
relaxation (solution is noted in yellow in figure 1), many 
conflicting local hypotheses are removed.  In particular, those 
track hypotheses that differ in the first scan past the resolved 
hypothesis layer are removed, while those that differ in the 
more recent past are maintained. 

Having pruned the set of track hypothesis trees (with 5 
surviving track hypotheses), we are ready for a new scan of 
data.  In the example, the resolved layer always lags the 
current time by one scan: thus we have a multi-hypothesis 
example with hypothesis-tree depth (n-scan) of one. 

 

III. THE CLICK TRACKER 

The filtering and data association methodology used in [6] 
and described in section 2 can be used in a novel manner to 
support the analysis of click data.  The objective is to associate 
click sequences, including buzz sequences, with the objective 
of determining the number of vocalizing mammals, as well as 
to classify these by species.   

The formulation above requires the concept of a slowly-
varying target state; here, the state is given by the inter-click 
interval (ICI) and click amplitude.  Previously, we had also 
included species type as a (static) state component [1], though 

subsequent analysis with a wider range of datasets revealed 
the difficulty in single-click classification.  Instead, we 
introduced the click spectrum as a state component [5]. 

For simplicity, in [5] we assumed no measurement noise in 
the recursive filtering process.  Thus, each association of a 
click to a click track results in a state update that replaces the 
previous state with the current state measurement.  We have 
maintained this simplification here. 

Secondly, again for simplicity, the tracker as described in 
[5] used an assumption in the state prediction stage, whereby 
the predicted state uncertainty did not depend fully on the 
prediction time step; this simplification has been removed 
here, so that the ICI uncertainty reflects the prediction time 
step.   

The third simplification of note in [5] was the assumption 
that no missed clicks were present in the dataset.  We have 
relaxed this assumption [5], allowing for a (user-defined) 
number of missed clicks before track termination.  As we will 
see, this enhancement leads to a considerable reduction in 
track confirmation. 

Not all associated click sequences lead to confirmed tracks.  
In particular, the tracker employs both an M-of-N track 
initiation filter, as well as a track-length filter, allowing for 
spurious association sequences to be removed as part of the 
tracking process.  The result is a relatively small number of 
confirmed tracks, with few false click sequences. 

As will be illustrated in the sequel, the enhanced tracker 
exhibits reduced fragmentation as well as a reduction in 
incorrect ICI estimates that are multiples of the true ICI.   

In the track displays to follow, a new color is used each 
time a new track is plotted, with five colors used in total.  For 
a given track, we use the same color in both the amplitude and 
ICI track displays. 

 

IV. RESULTS ON BLAINVILLE’S BEAKED WHALE BUZZES 

A. Description of the dataset and buzz click characteristics 
Two datasets are considered, both of which can be obtained 

from the Mobysound website [7].  The first dataset was 
recorded at the Atlantic Undersea Test and Evaluation Center 
(AUTEC) located off Andros Island, Bahamas, and was 
provided by the organizers of the 3rd InternationackWorkshop 
on the Detection and Classification of Marine Mammals using 
Passive Acoustics, Boston, July 2007 [8].  The second dataset 
was recorded by a DTAG [9] floating at depth in El Hierro, 
Canary Islands, Spain, and has been made available by Mark 
Johnson.  

As described in [8], the dataset recorded at AUTEC in the 
Bahamas consists of training and test data; the training data 
includes sixteen cuts of Blainville’s beaked whale from 0.5 to 
3 minutes in length, the test data includes one cut of 10 
minutes for which only Blainville’s beaked whales are 
present.  The sampling frequency is 96 kHz.  Nine buzzes 
were found in five of the training files and eight other buzzes 
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were found in the test file.  The duration of the buzzes of this 
dataset vary from 200 ms to 6 s. 

The dataset recorded by the DTAG in the Canary Islands 
consists of 21 minutes of data sampled at 192 kHz.  The 
quality of the data decreases with time, most likely due to the 
increase in the distance between the whales and the DTAG.  
Three short buzzes have been detected. 

The Blainville’s beaked whale produces two distinct click 
types: one during the search and approach phase (called 
regular clicks) and the second during the capture phase (called 
buzz clicks) [3, 10].  The first ones have most of their energy 
concentrated between 26 to 51 kHz and last around 270 µs.  
The second ones have most of their energy concentrated 
between 25 to 80 kHz and last around 100 µs [3].  In the 
Blainville’s beaked whale dataset recorded by the DTAG in 
the Canary Islands, the buzz clicks have the characteristics 
described above.  In the Blainville’s beaked whale dataset 
recorded at AUTEC in the Bahamas, the buzz clicks vary and 
can differ significantly from the characteristics described 
above. 

Fig. 2 gives the spectrogram of one long buzz recorded at 
AUTEC in the Bahamas.  The visualization of the buzz 
appears blurred towards the end: this phenomenon is due to 
the relatively large time discretization employed, which is 
required for the visualization of the full buzz in a single 
image.  In this figure we can see how much the characteristics 
(in particular the peak frequency) of a click of the same buzz 
can vary.  The duration of the buzz click have been found to 
vary from 100 µs to 800 µs and the peak frequency from 17 to 
35 kHz [4]. 

We did not find a means for single-click classification 
because even in the same buzz the characteristics of the clicks 
vary noticeably.  However, we observed that from one click to 
the next the peak frequency and the shape of the spectrum are 
very close.  Fig. 3 gives the spectrum of the first ten clicks 
(with the peak frequency less than 20 kHz) as well as ten near 
the end (with a peak frequency above 25 kHz) of the buzz 
illustrated in Fig. 2.  We see that the spectrum of the clicks 
that are close in time are similar, and during the buzz the 
shape of the spectrum is slowly varying from the initial shape 
to the final one.  The slow variation of the spectrum clicks in a 
buzz is true for all the buzzes present in these datasets.  

 
B. Previously obtained results 

The multi-hypothesis tracking algorithm in [1] was 
modified to use the property of slowly varying spectrum of 
buzz clicks to permit their association as a sequence [5].  
Under this scheme, buzz classification follows the automatic 
tracking of clicks.  To achieve a good detection on the buzzes, 
the transient detector threshold is low.  Correspondingly, all 
buzzes in the datasets were detected.  

Fig. 4 gives the transient detector output sequence (in red) 
and the amplitude of the tracks obtained with the MHT tracker 
on a short buzz of the Canary Islands dataset.  Fig. 5 gives the 
ICI of the tracks corresponding to Fig. 4.  In this example we 

can see the existence of a track with a false ICI (magenta 
track) at the beginning of the buzz due to miss detected clicks 
a track is formed on not consecutive clicks. 

Fig. 6 gives the transient detector output sequence (in red) 
and the amplitude of the tracks obtained with the MHT tracker 
on a long buzz of the test file recorded in the Bahamas.  Fig. 7 
gives the ICI of the tracks corresponding to Fig. 6.  In this 
example the buzz detection is fragmented in six tracks. 

Fig. 8 gives the transient detector output sequence (in red) 
and the amplitude of the tracks obtained with the MHT tracker 
on another long buzz of the test file recorded in the Bahamas.  
Fig. 9 gives the ICI of the tracks corresponding to Fig. 8.  In 
this example the buzz detection is fragmented in five tracks. 
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Figure 2: Spectrogram of a long buzz recorded at AUTEC in the Bahamas 
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Figure 3: Spectrum of the first ten clicks and ten clicks near the end of the 

buzz illustrated in Fig. 5 
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Figure 4: Click amplitude sequence (red) and MHT output (other colors) for a 

buzz of the Canary Islands dataset. 
 

 
Figure 5: Sequences of ICIs for tracks generated by the MHT tracker, on the 

buzz corresponding to Fig. 4. 
 

. 
Figure 6: Click amplitude sequence (red) and MHT output (other colors) for a 

long buzz of the test file recorded in the Bahamas. 
 

 
Figure 7: Sequences of ICIs for tracks generated by the MHT tracker, on the 

buzz corresponding to Fig. 6. 
 

 
Figure 8: Click amplitude sequence (red) and MHT output (other colors) for 

another long buzz of the test file recorded in the Bahamas. 

 
Figure 9: Sequences of ICIs for tracks generated by the MHT tracker, on the 

buzz corresponding to Fig. 8. 
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C. Results obtained with the enhanced version of the click 
tracker 

In this paragraph we give the results obtained with the 
enhanced click tracker, for the same buzz as in the previous 
paragraph.  

In figures 10-15, the number of missed detection allowed is 
2, and the M-of-N setting for track initiation is 9-of-100 
instead of 6-of-100 as in the previous paragraph.  It seems 
logical to use a more stringent M-of-N setting when we 
increase the number of allowed missed detection.  All the 
other parameters remain the same than in the previous 
paragraph. 

Fig. 10 and Fig. 11 give the results of the modified tracker 
corresponding to the same buzz as in Fig. 4 and Fig. 5.  There 
are still two tracks formed on this buzz, but both tracks now 
have the correct ICI. 

Fig. 12 and Fig. 13 give the results of the modified tracker 
corresponding to the same buzz as in Fig. 6 and Fig. 7.  The 
track of this buzz is fragmented in three pieces instead of six 
as in the previous version.  There is less fragmentation (two) 
for a number of allowed missed detection of six.  

Fig. 14 and Fig. 15 give the results of the enhanced tracker 
corresponding to the same buzz as in Fig. 8 and Fig. 9.  The 
buzz track is fragmented in four pieces instead of five in the 
previous version.  

 

 
Figure 10: Click amplitude sequence (red) and new MHT output (other 

colors) for the buzz of the Canary Islands dataset corresponding to Fig. 4. 
 

 
Figure 11: Sequences of ICIs for tracks generated by the new MHT tracker, 

on the buzz corresponding to Fig. 10 (to compare to Fig 5). 
 

 
Figure 12:  Click amplitude sequence (red) and new MHT output (other 

colors) for the long buzz of the test file recorded in the Bahamas 
corresponding to Fig. 6. 

 
Figure 13: Sequences of ICIs for tracks generated by the new MHT tracker, 

on the buzz corresponding to Fig. 12 (to compare to Fig.7). 
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Figure 14: Click amplitude sequence (red) and new MHT output (other 

colors) for the long buzz of the test file recorded in the Bahamas 
corresponding to Fig. 8. 

 

 
Figure 15: Sequences of ICIs for tracks generated by the new MHT tracker, 

on the buzz corresponding to Fig. 14 (to compare to Fig. 9). 
 

D. Conclusion 
The enhanced click tracker always gave equal or better 

results for all buzzes of the dataset relative to the results 
reported in [5], though less clear improvement is achieved in 
the example in Fig. 14 and Fig. 15.  The most critical 
parameter appears to be the number of allowed missed 
detections; further, the choice of M (number of contacts) in the 
initiation sliding window of size N, is critical in reducing the 
number of false tracks.  

 

V. RESULTS ON OTHER ODONTOCETES BUZZES 

The property of slowly varying spectrum of buzz clicks 
seems to be true for other species; correspondingly, we have 
applied our multi-hypothesis tracking algorithm on buzzes of 
sperm whales (Physeter macrocephalus), striped dolphins 
(Stenella coeruleoalba), Risso’s dolphin (Grampus griseus), 
and also on some buzzes recorded in Mediterranean Sea but 

for which the species has not been identified.  We have 
consistently found satisfactory results.  To optimize the 
results, it is likely that the detector and tracker parameters 
should be adjusted for each species.  An example is given in 
Fig. 16 for sperm whales, which seems to be the species for 
which the method is the most challenged.  There are several 
reasons that may explain the difficulties encounter for the 
sperm whale: sperm whale clicks are very different from those 
of other species, and the transient detector is not optimized for 
these clicks.  An error in the detection of the click gives an 
error in the click time as well as the click spectrum.  
Additionally, the sperm whale ICI is a lot higher than for other 
species, and decreases more smoothly to the buzz ICI, 
requiring an effective handling of the transition phase. 

 
A. Description of the dataset 

The dataset used for this example was recorded at the 
Atlantic Undersea Test and Evaluation Center (AUTEC) 
located off Andros Island, Bahamas, and is one of the test file 
provided by the organizers of the 3rd International Workshop 
on the Detection and Classification of Marine Mammals using 
Passive Acoustics, Boston, July 2007 [8].  It can also be 
obtained from the Mobysound website [7]. 

Many whales seem to be present in this dataset; we infer 
this due to the number of clicks detected per second and the 
typical ICI of sperm whale, which is closed to 1 second.  Four 
buzzes are present in this dataset.  

 
B. Results 

Because of the differences in sperm whale buzz clicks, the 
parameters have been set differently: less stringent association 
test for the ICI variation, and more stringent association test 
for the amplitude variation. 

Fig. 16 gives the sequence of tracker-generated ICIs for this 
dataset.  We can see that all four buzzes have been detected.  
For two of them, the tracks are fragmented and not complete, 
while for the two others the tracks are not fragmented and 
almost complete.  For the first buzz, many clicks are not 
detected; this explains why it is not possible to achieve a 
unique track on this buzz. 
 
C. Conclusion 

Although the sperm whale buzzes are challenging for this 
method, all buzzes are detected, and with the right ICI.  It is of 
interest to study if these results can be improved by optimizing 
the selection of algorithmic parameters for this species.  
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Figure 16: Sequences of ICIs for tracks generated by the new MHT tracker, 

on the sperm whale dataset. 
 

 

VI. CONCLUSIONS 

In this paper, we have described an improved MHT 
approach to click association, allowing for an improved 
estimate of the number of click sequences.  We have focused 
on analysis of the method on buzz clicks.  The modification in 
filter uncertainty predictions for ICIs, as well as allowing 
missed detections in click sequences, improves our previously 
reported tracker results [5] on Blainville’s beaked whale buzz 
classification.  Additionally, we have investigated the 
application of our click tracker for the detection and 
classification of many other odontocete buzzes from other 
species.   

It is important to note that the detection and classification of 
buzz clicks with our method requires that most clicks be 
detected; in turn, this requires a low threshold on the transient 
detector.  This can be computationally challenging in datasets 
with numerous animals that have low ICIs (e.g. dolphins).   

Finally, the correct determination of click spectrum requires 
an accurate determination of click time and duration.  This 
requires that the dataset have high SNR in the frequency band 
in which the clicks are detected.  An interesting step forward 
would be to build a click simulator in order to optimize the 
choice of detector and tracker parameters, as well as to 
provide a statistical characterization of algorithmic 
performance.  
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