

Reprint Series NURC-PR-2010-002

pOctaver, adding a scripting
language to MOOS

Arjan Vermeij and Thomas J. Pastore

August 2010

Originally presented at:

MOOS Development and Applications Working Group – Cambridge,
MA, 24-25 August 2010.

About NURC

Our vision

 To conduct maritime research and develop products in support of
NATO's maritime operational and transformational requirements.

 To be the first port of call for NATO's maritime research needs through
our own expertise, particularly in the undersea domain, and that of our
many partners in research and technology.

One of three research and technology organisations in NATO, NURC conducts maritime
research in support of NATO's operational and transformation requirements. Reporting to the
Supreme Allied Commander, Transformation and under the guidance of the NATO Conference
of National Armaments Directors and the NATO Military Committee, our focus is on the
undersea domain and on solutions to maritime security problems.

The Scientific Committee of National Representatives, membership of which is open to all
NATO nations, provides scientific guidance to NURC and the Supreme Allied Commander
Transformation.

NURC is funded through NATO common funds and respond explicitly to NATO's common
requirements. Our plans and operations are extensively and regularly reviewed by outside
bodies including peer review of the science and technology, independent national expert
oversight, review of proposed deliverables by military user authorities, and independent
business process certification.

Copyright © NURC 2010. NATO member nations have unlimited rights to use, modify,
reproduce, release, perform, display or disclose these materials, and to authorize others to do so
for government purposes. Any reproductions marked with this legend must also reproduce these
markings. All other rights and uses except those permitted by copyright law are reserved by the
copyright owner.

NOTE: The NURC Reprint series reprints papers and articles published by NURC authors in
the open literature as an effort to widely disseminate NURC products. Users should cite the
original article where possible.

NURC-PR-2010-002 NURC Reprint Series

 - i -

pOctaver, adding a scripting
language to MOOS

Arjan Vermeij and Thomas J. Pastore

This document, which describes work
performed under Unmanned Surface
Vehicles for Defence against
Terrorism (EPOW 2009) has been
approved by the Director.

NURC-PR-2010-002 NURC Reprint Series

 - ii -

Intentionally blank page

NURC-PR-2010-002 NURC Reprint Series

 - iii -

pOctaver, adding a scripting language to MOOS

Arjan Vermeij and Thomas J. Pastore

Executive Su mmary: NURC uses MOOS-IvP in a scientific research and rapid
prototyping environment. Contributions to the open-source suite of MOOS-IvP
software is readily made by programmers adept at C++ programming. However, the
utility of MOOS-IvP’s benefits can be expanded to additional users who normally
develop their work in Matlab.

Octave is an open source Matlab clone. We developed pOctaver, which can directly
run a script written in Octave as a MOOS application. This has great advantages in
allowing for rapid prototyping. A complex function or new concept developed and
preliminarily tested in Matlab can be quickly inserted into an existing moos mission
for system-level simulation. The subsequent step from simulation in the MOOS
environment to running on the vehicle follows immediately. The cycle from
developing a concept and testing it in Matlab to running it on a vehicle can be
reduced to hours or minutes, as contrasted with a timeline normally measured in
days or longer if a conversion from Matlab code to C++ were required. pOctaver is
a path by which a researcher can test a new function or application without requiring
a single line of C-code to be written.

Of course there is always a place for well-written and computationally more
efficient C++ programs, and Octave/Matlab can never compete with C++ if
computation times are critical. The advantage of pOctaver from an organizational
standpoint is that the efforts of the researchers and programmers can be decoupled
and are no longer serially dependent prior to a first in-water test of a new concept.

The design and implementation of pOctaver is discussed, along with some examples
of how it has been used at NURC in recent months.

This work was initially presented at MOOS-DAWG (MOOS Development and
Applications Working Group) meeting, August 2010, Cambridge, Mass. USA This
document consists of the abstract, the presentation slides from the working group
meeting, and the pOctaver source files as an annex.

NURC-PR-2010-002 NURC Reprint Series

 - iv -

Intentionally blank page

NURC-PR-2010-002 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - v -

pOctaver, adding a scripting language to MOOS

Arjan Vermeij and Thomas J. Pastore

Abstract: NURC uses MOOS-IvP in a scientific research and rapid prototyping
environment. Contributions to the open-source suite of MOOS-IvP software is
readily made by programmers adept at C++ programming. However, the utility of
MOOS-IvP’s benefits can be expanded to additional users who normally develop
their work in Matlab.

Octave is an open source Matlab clone. We developed pOctaver, which can directly run
a script written in Octave as a MOOS application. This has great advantages in allowing
for rapid prototyping. A complex function or new concept developed and preliminarily
tested in Matlab can be quickly inserted into an existing moos mission for system-level
simulation. The subsequent step from simulation in the MOOS environment to running
on the vehicle follows immediately. The cycle from developing a concept and testing it
in Matlab to running it on a vehicle can be reduced to hours or minutes, as contrasted
with a timeline normally measured in days or longer if a conversion from Matlab code to
C++ were required. pOctaver is a path by which a researcher can test a new function or
application without requiring a single line of C-code to be written.

Of course there is always a place for well-written and computationally more efficient
C++ programs, and Octave/Matlab can never compete with C++ if computation times are
critical. The advantage of pOctaver from an organizational standpoint is that the efforts
of the researchers and programmers can be decoupled and are no longer serially
dependent prior to a first in-water test of a new concept.

The design and implementation of pOctaver is discussed, along with some examples of
how it has been used at NURC in recent months.

This work was initially presented at MOOS-DAWG (MOOS Development and
Applications Working Group) meeting, August 2010, Cambridge, Mass. USA This
document consists of the abstract, the presentation slides from the working group
meeting, and the pOctaver source files as an annex. The annex is distributed as a tar file
which is separate from the current pdf document, but integral to this reprint and may be
requested by sending an email to pao@nurc.nato.int.

Keywords: Autonomy, computer programming, software design.

pOctaver, adding a scripting
language to MOOS

Arjan Vermeij
Tom Pastore

August 25, 2010

Software is good ...

● it adds functionality
– interfaces to external actuators/sensors
– behaviours
– simulation

● it's at the heart of every trial/experiment

Software is bad ...

● it has to be
– downloaded
– compiled by everybody
– maintained
– rewritten
– discarded

● it requires software engineering skills

Software

● is a means to and end
● we want to have as little software as possible
● how much software do we have?

Source files

Source text lines

Two 'Solutions'

● NurcMoosApp
– may reduce the amount of bookkeeping code
– aims to help improve the quality of the code

● pOctaver
– higher level scripting language

NurcMoosApp

● a subclass of MOOSApp
● has a somewhat simpler interface
● avoids some common pitfalls
● provides some functionality potentially useful to

MOOS applications
– initialisers
– configurable variable names

NurcMoosApp — API

bool readMissionParameters (CProcessConfigReader&);

bool registerMoosVariables ();

void onNewMessage (const CMOOSMsg&);

bool Iterate ();

template <typename T> static T

getConfigParameter

 (const std::string name, const T defaultValue);

const VariableNames& variableNames () const;

NurcMoosApp

● a subclass of MOOSApp
● has a somewhat simpler interface
● avoids some common pitfalls
● provides some functionality potentially useful to

MOOS applications
– initialisers
– configurable variable names

NurcMoosApp — Mission File

ProcessConfig = someNurcMoosApp

{

 initialiser.string = FAVOURITE_COLOUR = red

 initialiser.string = CPU_TEMPERATURE = 30

 variablename.colour = FAVOURITE_COLOUR

 variablename.temperature = TEMPERATURE

}

NurcMoosApp — Variable Names

m_Comms.Register (variableNames ().get ("colour"), 0);

if (moosMessage.GetKey ()

 == variableNames ().get ("colour"))

 ...

m_Comms.Notify (variableNames ().get ("colour"), ...

Octave

● an open source Matlab ® clone
● offers

– matrices, strings, regular expressions
– solving linear equations
– solving nonlinear differential equations
– plotting

● lacks
– many advanced toolboxes

Example — negate

ProcessConfig = ANTLER

{

 Run = pOctaver @ NewConsole = false ~ pOctaver.negate

}

ProcessConfig = pOctaver.negate

{

 OctaveFunction = negate

 argument.in = negate.in

 argument.out = negate.out

}

Example — negate

negate.m

input/output

function negatedValue = negate (value)

 negatedValue = -value;

end

 negate.in negate.out

 3.00000 -3.00000

 -5.00000 5.00000

Example — multiplier

ProcessConfig = pOctaver.multiplier

{

 OctaveFunction = multiplier

 argument.in = multiplier.factor

 argument.in = multiplier.in

 argument.out = multiplier.out

 initialiser.double = multiplier.factor = 3

}

Example — multiplier

multiplier.m

input/output

function result = multiplier (factor, value)

 result = (factor * value);

end

multiplier.factor multiplier.in multiplier.out

 3.00000 3.00000 9.00000

 -5.00000 -15.00000

 4.00000 -20.00000

Example — accumulator

accumulator.m

input/output

function result = accumulator (value)

 persistent accumulated = 0;

 accumulated += value;

 result = accumulated;

end

 accumulator.in accumulator.out

 1.00000 1.00000

 2.00000 3.00000

 3.00000 6.00000

Example — behaviour

function headingUpdates = maintainRelativeBearing
(relativeBearing, contactX, contactY, navX, navY)

 contactAngle

 = atan2 ((contactY - navY), (contactX - navX));

 desiredRelativeAngle = - (relativeBearing / 180.0 * pi);

 desiredVehicleAngle = (contactAngle - desiredRelativeAngle);

 heading = mod

 ((90.0 - (desiredVehicleAngle * 180.0 / pi)), 360.0);

 headingUpdates = sprintf ('heading = %.2f', heading);

end

Example — behaviour

Behavior = BHV_ConstantHeading

{

 name = BHV_ConstantHeading_LowPower

 pwt = 100

 condition = (MODE == LOWPOWER)

 heading = 0

 updates = bhvconstantheadinglowpowerupdates

 duration = notimelimit

}

Example — behaviour

Example — behaviour

Example — JANUS

● software defined acoustic modem
● FSK modulation / demodulation
● interleaving / deinterleaving
● convolutional encoder / Viterbi decoder
● runs on PC 104 stack on board OEX

pOctaver — when to use

● quick and dirty glue code
● behaviours
● rapid prototyping
● simulation

pOctaver — pros

● small, powerful, robust code snippets
● no compilation required
● no knowledge of C++ required
● testing directly in Octave
● increased productivity
● better workflow
● no license fees

pOctaver — cons

● yet another language ...
● more resource intensive than C++
● less portable
● not good on embedded systems

pAny

Question:

is it possible to design a similarly simple interface

for 'any' C++ function?

Answer:

yes, it's called pAny, and I'm working on it.

Distribution

● pOctaver is a 'finished' product
● distributed to workshop participants
● please use it
● open to suggestions for improvement
● please give feedback!

Document Data Sheet
Security Classification

Project No.

EPOW

Document Serial No.

NURC-PR-2010-002

Date of Issue

August 2010

Total Pages

33 pp.

Author(s)

Vermeij, A., Pastore, T.J.

Title

pOctaver, adding a scripting language to MOOS.

Abstract

NURC uses MOOS-IvP in a scientific research and rapid prototyping environment. Contributions to the open-
source suite of MOOS-IvP software is readily made by programmers adept at C++ programming. However, the
utility of MOOS-IvP’s benefits can be expanded to additional users who normally develop their work in Matlab.
Octave is an open source Matlab clone. We developed pOctaver, which can directly run a script written in Octave
as a MOOS application. This has great advantages in allowing for rapid prototyping. A complex function or new
concept developed and preliminarily tested in Matlab can be quickly inserted into an existing moos mission for
system-level simulation. The subsequent step from simulation in the MOOS environment to running on the
vehicle follows immediately. The cycle from developing a concept and testing it in Matlab to running it on a
vehicle can be reduced to hours or minutes, as contrasted with a timeline normally measured in days or longer if a
conversion from Matlab code to C++ were required. pOctaver is a path by which a researcher can test a new
function or application without requiring a single line of C-code to be written. Of course there is always a place
for well-written and computationally more efficient C++ programs, and Octave/Matlab can never compete with
C++ if computation times are critical. The advantage of pOctaver from an organizational standpoint is that the
efforts of the researchers and programmers can be decoupled and are no longer serially dependent prior to a first
in-water test of a new concept. The design and implementation of pOctaver is discussed, along with some
examples of how it has been used at NURC in recent months. This work was initially presented at MOOS-DAWG
(MOOS Development and Applications Working Group) meeting, August 2010, Cambridge, Mass. USA This
document consists of the abstract, the presentation slides from the working group meeting, and the pOctaver
source files as an annex. The annex is distributed as a tar file which is separate from the current pdf document, but
integral to this reprint.

Keywords

Autonomy, computer programming, software design

Issuing Organization

NURC
Viale San Bartolomeo 400, 19126 La Spezia, Italy

[From N. America:
NURC
(New York) APO AE 09613-5000]

Tel: +39 0187 527 361
Fax:+39 0187 527 700

E-mail: library@nurc.nato.int

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

