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Abstract—A main challenge of military oceanography (MILOC)
is to assess the oceanographic conditions of denied/high-risk ma-
rine regions. Monitoring technologies are limited to those that can
provide access to these regions. Remote sensing and autonomous
underwater vehicles (AUVs) can support MILOC requirements.
Unfortunately, the environmental information gathered by these
technologies is not complete: remote sensing provides information
about some surface conditions and water-column integrated
variables, whereas operational priorities often constrain AUVs
use during real crisis situations to missions with higher priority
than environmental assessment. Under this scenario, data fusion
techniques to maximize the information of the collected data
are essential. This paper attempts to reconstruct thermal fields
fusing data gathered by remote sensing platforms and AUVs
performing missions not specifically designed for environmental
data collection. The technique estimates the state that maximizes
the posterior probability subjected to some smoothing constraints.
A variational methodology allows remote sensing information
to serve as boundary constraints. The approach uses 3-D finite
elements to solve the maximization problem. The procedure in-
vestigated has been tested with different smoothing constraints in
a simulated environment and in a real field experiment conducted
by the Muscle AUV in the Gulf of Riga (Baltic Sea) on April 19,
2008. Results highlight the relevance of incorporating the surface
information provided by remote sensors into the estimation.

Index Terms—Autonomous underwater vehicles (AUVs), finite
elements, oceanographic sampling.

I. INTRODUCTION

ILITARY OCEANOGRAPHY (MILOC) attempts to

provide a timely meteorological and oceanographic
(METOC) characterization of hostile littoral waters to which
access is denied. Denied littoral waters are enemy held or dis-
puted territorial waters, dangerously exposed waters adjacent
to a severely threatened coastline, and regions not under the
direct control of the enemy, but under his close surveillance.
They introduce the classical asymmetry in the battlefield posed
by the defender’s advantage as holder of the battlespace over
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the attacker. Knowing the environment better than the adver-
sary is a critical element to diminish the tactical asymmetry
introduced by denied areas. Timely characterization of these
regions is currently a challenging scientific and technological
problem.

Until recently, in situ observational technologies fitting
MILOC requirements of discretion and security were scarce.
Environmental characterization of denied areas strongly de-
pended on numerical approaches supported by remote sensing.
Numerical ocean models of different spatio—temporal res-
olutions were nested in an attempt to downscale METOC
information to the region of interest [34]. Complexity in the
procedure and sensitivity to error propagation from large-scale
simulations are the main drawbacks of this approach. Remote
sensing is already recognized by the different navies as an im-
portant war-fighting tool [17]. Imaging radiometry, altimetry,
and radar have been used to monitor hostile areas. Its appli-
cation to coastal environments presents certain peculiarities
that require higher spatial and temporal resolutions. Exploiting
synergism with in sifu measurements is of particular interest in
this context.

Current technological capabilities can support a new method-
ology to characterize marine environments in hostile areas. This
methodology relies on in situ observations rapidly carried out by
coordinated fleets of autonomous robotic platforms, specially
designed for real-time observation of the ocean environment,
and complemented by remote sensing systems. Among these
platforms are gliders, autonomous underwater vehicles (AUVs),
and autonomous surface vehicles (ASVs).

AUVs represent a covert in situ capability to assess denied
coastal areas [35]. These are submarine robots able to carry out
expeditionary campaigns autonomously [11] whose hydrody-
namic shape, electrical propulsion, and submarine navigation
and positioning allow continuous sampling of environmental
conditions. Their current main limitations are related to battery
duration and the sophistication of submarine positioning and
navigation. Military applications include mine hunting/neutral-
ization and mine countermeasures (MCM); antisubmarine war-
fare (ASW) and ASW track and trail; intelligence, surveillance,
and reconnaissance (ISR); target designation; and the collec-
tion of environmental data such as hydrographic/bathymetric
surveys [36]. Among these applications, AUV capabilities for
mine location and clearance operations are the most developed
and employed, having been extensively tested during the real
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war scenarios such as the Operation Iraqi Freedom [21]. The
technological maturity for this specific application and/or oper-
ational priorities have constrained the use of AUVs during real
crisis situations to mine countermeasure operations in which au-
tonomous vehicle follows preprogrammed tracks at a constant
altitude from the bottom. Excursions to surface occur at sporadic
assigned locations to validate or update the navigation system
or to transmit data to the mother platform.

Conductivity—temperature—depth (CTD) sensors are stan-
dard in the suite of sensors carried by AUVs, and the data are
collected by the vehicle while searching for mine-like objects.
However, extracting environmental information from the CTD
data gathered during mine countermeasure operations is dif-
ficult. This is because the trajectories followed by the AUV
to search for mine-like objects do not constitute an optimal
oceanographic sampling. Specifically, the volumetric space
considered is not evenly sampled but measurements are dense
on a hypersurface close to the bottom and in few vertical casts
relatively distant from each other. In other words, locations of
the given samples are very unequally distributed. Additionally,
the high sampling rate of AUVs results in huge data sets, which
are unusual in ship-based oceanography. These particularities
prevent the use of geostatistical techniques commonly em-
ployed in oceanographic data analysis.

Traditionally, exploitation of oceanographic data requires
representation of the sampled field on a regular grid which
permits extracting dynamic information from the data. Esti-
mation procedures are commonly employed to assign the best
values at grid points on a regular grid from the data gathered
at arbitrarily locations. One of the most commonly used esti-
mation techniques is inverse distance weighted interpolation.
These methods are also known as “Shepard methods” after the
name of the first contributor in this field [37]. Shepard methods
assumed that the interpolated values should be influenced more
by nearby points and less by the more distant points. Specifi-
cally, the interpolated value at a target grid point is defined as
a weighted sum of observed values. The weighting function is
inversely proportional to the observation—gridpoint distance.
All data points are used to estimate field values at unsampled
locations. Distance-based schemes are in general less accurate
and less efficient than other estimation approaches. Among
their weaknesses, they tend to overweight data clusters. They
also enforced radial isotropy around sample points, obscuring
ridges and valleys in the field. Concerning their strengths,
Shepard methods have the ability to extrapolate naturally out-
side the convex hull of the given data points. Finally, they are
among most viable candidates for extension to three or more
independent variables [4].

Radial basis function methods were initially proposed by
[16] to interpolate scattered data from irregular surfaces. Inter-
polated values are obtained from a weighted sum of a family
of nonlinear functions, called radial basis functions, centered
at each observation. Multiquadratics, inverse multiquadratics,
Gaussian, or Cauchy functions are commonly employed as
radial basis functions. Weighting coefficients are obtained by
enforcing the expansion to meet the observed values at sampled
locations. While radial basis function methods are capable
of very accurate fittings, they are not suitable for large data
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sets because they require a preprocessing stage of solving a
system of linear equations that it dimensions with the number
of data points. Application of radial basis function methods to
oceanographic analysis is rather sparse in the literature [8].

Optimal interpolation schemes are of general use in oceanog-
raphy [2], [29]. The approach relies on the locations where data
are collected and an a priori knowledge of the covariance of
the sampled field to provide the best linear estimation of the
average and variance of the field at given unsampled locations.
Specifically, the value of the field at an unobserved location
is linked to a set of measurements using a discrete linear re-
gression model. Regression coefficients are obtained from the
variance and covariance relationship of the target field. If the
spatial variability of the target field can be reasonably modeled
as a Gaussian process, optimal interpolation is the best pre-
dictor (in terms of minimizing the mean square error), linear
or nonlinear [33]. Optimal interpolation provides reliable es-
timates at locations inside the spatial extend spanned by the
set of observations (properly known as interpolation problem)
but problems may appear when estimating field values outside
the convex hull defined by observations (extrapolation) [38].
Determination of a covariance model could be problematic in
regions like coastal areas, where historical data may be sparse
or nonexistent. Measured values, which are usually perturbed
by errors, are met exactly in this approach causing frequently
unacceptable errors in calculated derivatives. Similarly to ra-
dial basis function methods, optimal interpolation dimensions
computationally with the number of samples and so is gener-
ally unfeasible for the very large data sets produced by AUV
systems.

Volumetric estimations can be obtained complementing
sparse in situ vertical profiles with remote sensing and histor-
ical data [28]. Briefly, this approach computes the empirical
orthogonal function (EOF) decomposition of a multivariance
matrix obtained from historical and present vertical profiles of
different oceanographic variables. Temperature and sea height
anomaly (SH) profiles are commonly employed to complement
AUV observations of a target oceanographic field, because
their surface values are easily obtained from remote sensing
[sea surface temperature (SST) and sea surface height anomaly
(SSH)] [30]. EOFs are defined by multicoupled modes, each
containing patterns corresponding to the fields considered.
Each field is then expanded in terms of a small number of
corresponding modes of variability but with the same coeffi-
cients. Weighting coefficients are obtained by enforcing surface
boundary conditions of the fields measured from satellite.
Implementation of this multivariate procedure is limited by the
existence of a dense historical data set in the region to build a
representative multivariance matrix. Besides, determining SSH
from altimetry in coastal areas is not always possible due to
technical problems such as the land influence, the resolution
of geophysical corrections, uncertainties of the mean sea level,
and the low spatio—temporal resolution in regard to the coastal
scales of variability [24].

Spline models are an alternative to previous estimation
schemes [29], [42]. From a stochastic point of view, the tech-
nique provides the maximum-likelihood estimate from the data
and a priori information that the first (membrane model) or
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second derivatives (plate model) are zero everywhere and the
result of random errors, i.e., white noise. In a more mathe-
matical perspective, the approach is a regularization technique
that stabilizes the inverse problem using a specific class of
stabilizing functionals to restrict admissible solutions to spaces
of smooth functions. Strengths of spline models are that they
provide smooth estimations at unsampled locations, which are
much better suited for derivative computations than previous
procedures, they rely on a priori knowledge (smoothness of
the field) of general applicability, and they dimension with
the numerical grid used to solve the minimization problem.
Their major drawback is that they do not characterize the
uncertainty in the predictions. Spline techniques only provide
the variance of the estimator. The lack of knowledge of a
covariance function encoding the variability of the sampled
field prevents the application of the Gauss—Markov theorem to
compute prediction errors [9]. Spline models have been widely
employed in different scientific disciplines like oceanography
[6], [7], [29], geophysics [39], meteorology, and climatology
among others [42].

A finite element formalism has been often employed to re-
construct continuous fields from experimental data using spline
models in 2-D [5], [19] and 3-D [15]. The physical domain is
divided in customary finite elements or cells in this approach.
Continuous functions defined on this domain are approximated
for each element in terms of some interpolation basis and func-
tion values at the element nodes. Similarly, function derivatives
are computed from the derivatives of the interpolation basis and
node values. Samples are represented in the same way. An ad-
vantage of this particular encoding is the substantial reduction
of the dimensionality of the problem, being now dependent on
the number of nodes of the finite element grid that discretizes
the domain.

This paper investigates a procedure to estimate thermal
conditions in a volumetric portion of a marine region from
oceanographic data gathered by AUVs and remote sensors.
AUV missions under consideration are not restricted to those
designed to collect environmental data. The vehicles will be re-
ferred to as AUVs of opportunity in these cases. To the author’s
knowledge, this problem is addressed here for the first time.
A variational approach with boundary constraints given by
surface field data obtained through remote sensing is proposed
to infer volumetric variability from sparse spatially biased data
gathered by the AUV. Membrane and thin plate spline models
are used to condition the resulting inverse problem, and their
performance is compared. A finite element representation of the
underlying oceanographic field is also suggested to numerically
solve the system of equations resulting from the variational
approach. The case of mine countermeasure operations is
specifically treated here but the approach is easily generalized
to any situation where AUV missions are not specifically
designed for oceanographic sampling. The paper is organized
as follows. Section II describes the mathematical aspects of
the proposed methodology. Section III briefly summarizes
the computational techniques applied to solve the problem.
Application of the developed methodology is exemplified in
Section IV. Finally, Section V discusses and concludes the
work.
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II. MATHEMATICAL FORMALISM

Let ¢(z, y, z) be the generic scalar field we are interested to
estimate in a given volume V' of the ocean. Examples of ) could
be the temperature, salinity, or color fields. In principle, no a
priori knowledge of the field is assumed except that it presents
some coherence in space, that is, it does not change abruptly.
This smoothness constraint is often expressed in terms of a prob-
ability that measures the extent to which the smoothness as-
sumption is violated by a particular choice of ¢(z, y, z). In 3-D
continuous fields, smoothness terms often involve derivatives.
Different orders of derivatives imply different smoothness. In
particular, first

)= [ [ [ 9ol ardya:
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derivative seminorms are commonly chosen as a smoothness
constraint. These are known as membrane and thin plate models,
respectively [25]. Membrane models assume a priori that the
field has constant amplitude. A field with a constant spatial gra-
dient is considered a priori if a thin plate model is used. In both
cases, the a priori probability of the field follows a Gibbs dis-
tribution given by [22]

P() e~ (@/2)F () 1)
with « being a scaling factor to be determined. The probability
density (1) strongly penalizes those functional forms of 1 with
high deviations from the a priori model in the volume V.

Let us suppose that the field has been sampled by an AUV
following a path (x(¢),y(¢),2()), ¢ being time, inside the
volume V. The specific case of a single AUV is considered
here; application of the method can be extrapolated when more
AUVs are present. No restrictions are imposed on the trajectory.
The output of the sampling process is a set of measurements
taken at discrete locations d = {d(«;,yi,%i)},_; x» Where
the number of samples /N could be very large (up to tens of
thousands). It is assumed that the observation of the AUV
at a given location (z;,y;. z;) is the true value of the field at
this location (2, yi, ;) plus an independent Gaussian noise
e(x;, i, zi) characterized by a standard deviation o (. y;, 2; ).
Under this assumption, the probability to get the set of mea-
surements {d(z;,yi,2)},_, » for a given realization of the
field 9)(x, y, z) is provided by the likelihood density [39]
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{d(zi,yin2i)}isq i

‘ pldly) Py

P oy - L) PW)

p(d) ®



NURC Reprint

where p(d) is the probability density of the observations, which
is constant when d is given. Substitution of (1) and (2) in (3)
gives [39]

P(p]d) o o™ Do ((0emd /202 /2R g
The maximum a posteriori (MAP) estimate is defined by the
field Y MAF (2, v, ) that satisfies

N

, i — dy)?
GMAP = arg mwin (Z % + %F(q/))) (%)
? i=1 2

PpMAP (2,9, 2) is then the most probable field compatible with

our level of knowledge described by the smoothness constraint
and the data collected by the AUV.

The field 4»*AF (2, y, 2) can be calculated using a variational
approach. Variational principles have been widely used in me-
teorology [1], [10], [18], [23] and oceanography [14], [27]. The
selection of a variational procedure to solve (5) is adopted here
because variational calculus includes boundary conditions in an
elegant fashion [12]. This feature facilitates later the integration
of remotely sensed data into the formalism. After some manipu-
lation, condition (5) can be written as (6), shown at the bottom of
the page, for the membrane model and (7), shown at the bottom
of the page, for the thin plate model. In both equations, S is the
surface enclosing the volume V' and §(z, y, z) is the 3-D Dirac
delta. Because variations of the field 1) are independent, rela-
tion (6) holds if the field satisfies the associated Euler—Lagrange
differential equation

MAP
Z (1/} 0_ —d; ) 4 vaM AP =0 (8)
i=1 @

“AP|5 i = 0 or

= 0. Similarly, (7)

with the natural boundary condition V4
Dirichlet boundary condition §1/™4F | g
derives the Euler—Lagrange equation
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subjected to Dirichlet boundary conditions §M*F |¢ = 0

or natural boundary conditions V (VZ¢yM4F) ¢/ = 0 and
V2yMAP | o = 0. In this study, satellite data will be incor-
porated to impose a Dirichlet boundary condition at the sea
surface while natural boundary conditions are assumed in the
rest of the boundary surfaces where no information is available.

Summarizing, the estimation of the field ¢(x,y,2) in the
volume V' is the maximum of a posterior solution of a prob-
ability that takes into account the assumption of smoothness
of the field and the data obtained from the AUV and remote
sensors. In situ data gathered from the AUV are source terms
of the Euler-Lagrange equation derived from the optimization
process, while satellite data constrain the boundary values at
one of the boundary surfaces of the domain. This procedure op-
timizes the exploitation of information available from remote
sensors and AUVs.

III. COMPUTATIONAL METHOD

A 3-D finite element approach has been programmed to solve
the mathematical problem described in Section II. The total
volume V' under consideration is discretized with an unstruc-
tured mesh constituted by elementary volume units. The un-
structured character of the mesh allows easy adaptation to the
irregularities of the boundaries showing finer resolution in very
irregular regions. Different geometries of the volume element
can be considered to build the mesh. The geometry of a tri-
angle-based prismatic element is considered in this work. This
geometry provides enough accuracy to solve the proposed math-
ematical problem while maintaining reasonable computational
requirements [13]. The prismatic element is defined by 15 nodes
(Fig. 1). This is the simplest prismatic element that supports
computation of second derivatives of the field.

The finite element procedure encodes the value of any func-
tion (2, y, z) inside the prismatic element by the value of the
function at each node and a set of interpolation functions

($MAP — 4,) 15
Z —2Z + Oév4'l/)MAP =0 (9) ’l/)(fr,./ Y, z) = Z 17Vi(7'-, 5775)1/‘)1. (10)
o
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(N (wMAP _ di) /
/ / / Z 20 (i iy 2) 0% + aVYMATV Sy | dadydz
; 0;
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Fig. 1. Prismatic element with 15 nodes.

where 9, is the value of the function at node ¢ and N;(r, s, t)
represents the interpolation functions expressed in a local coor-
dinate system {r, s,#} [13]. The specific mathematical expres-
sions of these functions are not replicated here as they can be
easily found in different textbooks about finite elements [13],
[41]. An advantage of this encoding is that the computational
demand depends on the total number of nodes considered in the
mesh and not on the size of the data set. This permits to process
huge amount of data with limited computational effort. To pro-
vide an idea, data sets up to 3.7 x 10* samples have been pro-
cessed in this work using the described finite element approach.

Substitution of (10) into (6) and (7) results in a system of
linear equations for the unknown values of the field at the nodes

(11)
(12)

for the membrane and thin plate models, respectively. Matrices
are given by (13), shown at the bottom of the page, where V,, and
N, are the volume and data inside a prismatic element and su-
perscripts M and T'P refers to membrane and thin plate models,
respectively. Systems (11) and (12) are solved, after adequately
introducing the boundary conditions, to obtain the values of the

(K™ + Aij) v = g
(KTP‘ij + A”) 1/}]' =g
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Fig. 2. Trajectory simulating a mine countermeasure mission for an AUV.

The method described is of little practical use unless the
smoothing parameter « can also be estimated. Previous
oceanographic studies made use of heuristic considerations to
determine the value of « [6], [7]. A more objective assessment
of the smoothing parameter is obtained using the generalized
cross-validation (GCV) procedure [42]. GCV is a predictive
mean square error criterion that has been widely employed
in other scientific disciplines, including numerical weather
prediction [43], image processing [3], astronomy [40], and
chemistry [20]. For the present case, the GCV estimate of « in
(11) and (12) is the minimizer of V' («)

1 .
I = H(a)ol?

(%Tracc (1 - H(a)))2 "

Via) =

with N being the total number of nodes, I the identity matrix,
and f the influence matrix defined by

~1
H(a) = A(ATA n OC2KAI(TP)TKAM(TP)) AT (15)

with superscript 7" standing for transpose operation. The mini-

field at the nodes of the mesh. mization is suggested to be done over the interval (0, \/ 4.4 /15|
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Fig. 3. (a) Simulated 3-D temperature field and (b) corresponding coarse grained surface conditions emulating satellite measurements. Colorbar units: degrees

Celsius.

with 444 and px being the largest magnitude eigenvalues of
T .
AT A and KMTP)" gM(TP) regpectively.

IV. RESULTS

A. Simulated Environment

The mathematical and computational methodologies de-
scribed in Section III have been tested in a virtual environment.
An arbitrary marine region of 7 x 5 km? is considered (Fig. 2).
The area is 35 m deep, which is representative of many mine
countermeasure operations. A mine countermeasure operation
is programmed for a virtual AUV. The mission consists of
tracing five legs of 7-km length with a spacing of 1 km apart
from each other. The vehicle navigates at an altitude of 5 m
from the bottom. Three vertical trajectories in the water column
are assumed corresponding to depth excursions of the vehicle.

During its flight, the AUV is assumed to cross through water
masses of different thermal signature. Fig. 3(a) shows the com-
plexity of the 3-D structure of the temperature field consid-
ered. This field is characterized by strong temperature gradients,
ranging from water masses of 5 °C near the bottom to more than
20 °C at some surface locations. Isothermal tubular structures
going from surface up to 20-m depth populate the warmest area.
These structures would resemble those generated by turbulent
mixing. A thermograph of the sea surface temperature is sim-
ulated by coarse representation of the surface layer of the 3-D
temperature field. Resolution of the thermograph data is 1 km,
emulating the typical resolution of the advanced very high reso-
lution radiometer (AVHRR) sensors [Fig. 3(b)]. The simulated
data set gathered by the AUV is constituted by 36 093 samples,
corresponding to a sampling frequency of a measurement per
meter of trajectory (1 Hz at 2 kn). The degree of environmental
complexity generated to test the developed procedures is not
very likely to occur in the real ocean, except perhaps in extreme
estuarine conditions involving river outflows of very cold water
into a very warm sea. However, it provides an excellent frame-
work to test the algorithms.

A 3-D grid of 1532 nodes and 462 prismatic elements was
generated in the region of interest (Fig. 4). This grid corre-
sponds to segmenting the volume with seven layers of prismatic
elements of 5-m depth and triangular faces with approximate
1-km edges. Fig. 5(a)—(d) shows the temperature field estimated
from the AUV data using the membrane and thin plate models

= = §§§

Z(m)

7000

2000 3000

1000 2000

1000

Y(m X (m)

Fig. 4. First layer of prismatic elements.

with and without incorporating satellite information. Similarly
to Fig. 3(a), isothermals corresponding to 20 °C, 19 °C, 18 °C,
17°C, 15°C, 10 °C, and 5 °C are displayed in Fig. 5(a)—(d). A
membrane model without satellite information generates a verti-
cally layered thermal field [Fig. 5(a)]. Information from the vari-
ability of the most superficial layers is only captured at the first
vertical trajectory, but rapidly smooths out in the volume. A sub-
stantial modification in the estimated field is obtained with the
incorporation of satellite information to the membrane model
[Fig. 5(b)]. A higher spatial variability is now observed at the
surface layers. A doming of the isothermal of 18 °C is found
at the rightmost corner of the domain. This region is charac-
terized by a high spatial variability described by a number of
small-scale tubular structures. Satellite resolution is not high
enough to resolve these small structures, resulting in a rather
homogeneous surface region with temperatures close to 18 °C.
The warm structure existing in the leftmost corner of the domain
is partially recovered. Finally, notice that the surface doming is
also extrapolated to the isothermal of 5 °C. Fig. 5(c) displays the
estimations obtained by the thin plate model without including
satellite information. Direct comparison with Fig. 5(a) reveals
a bigger impact from the data gathered in the vertical trajec-
tories of the AUV. Finally, Fig. 5(d) displays the isothermals
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Fig. 5. Estimations of the temperature field obtained with (a) the membrane model without satellite information, (b) the membrane model with satellite informa-
tion, (c) the thin plate model without satellite information, and (d) the thin plate model with satellite information. Colorbar units: degrees Celsius.

estimated with the thin plate model incorporating satellite in-
formation. Estimated surface variability increases. Similarly to
the membrane model, a doming of the 18 °C isothermal is pre-
dicted. However, the warm structure of the leftmost corner of the
domain is better defined than in the previous case. Finally, the
estimated isothermal of 5 °C is a surface parallel to the bottom
as in the original data.

A more quantitative evaluation of the performance of the
different model is obtained from a scatter plot representing
the estimated versus real temperatures at the nodes of the grid
(Fig. 6). Fig. 6(a) confirms the layered nature of the field esti-
mated with the membrane model without satellite information.
The computed estimation error is 0.99 °C. Similar estimation
error is found for the case of the membrane model incorpo-
rating satellite information [Fig. 6(b)]. A substantial part of
this error is attributed to the wrong estimation obtained for the
deepest isothermals. Remarkable deviations are found at spatial
locations with temperatures lower than 5 °C. Fig. 6(c) and (d)
shows substantial improvements in the estimated field when
the thin plate model is used. Estimation errors are 0.72 °C and
0.56 °C for estimations without and with satellite information,
respectively. Fig. 7(a)—(d) displays the 3-D distribution of the
estimation error, providing additional intuition to the analysis.
Comparison of Fig. 7(a)—(d) shows the impact of satellite data
on estimations. Significant deviations from true temperature
values are found in the membrane model without satellite
information, out of the AUV horizontal sampling plane and
vertical casts [Fig. 7(a)]. The approach underestimates the tem-
perature except in the deepest layer, showing a positive error
gradient with depth. Inclusion of satellite data partially corrects
the deficiency found in the previous estimations [Fig. 7(b)].
The estimation error diminishes in the first 20 m of the water
column. Notice that the correction seems to be done through
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Fig. 6. Comparison of real versus estimated temperatures obtained from (a) the
membrane model without satellite data, (b) the membrane model with satellite
data, (c) the thin plate model without satellite data, and (d) the thin plate model
with satellite data.

adding a temperature offset that warms up the whole water
column, resulting in relevant positive errors in areas distant
from vertical casts (leftmost corner of the volume). Concerning
the thin plate model, Fig. 7(c) and (d) reinforces the benefits of
adding satellite information to the estimation process. Finally,
comparison of Fig. 7(a)—(d) confirms the superior performance
of the thin plate model when compared to the membrane model.
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Fig. 8. Muscle AUV employed during Colossus 2 experiment.

B. Field Experiment

A field experiment named Colossus-2 was conducted by
the NR/V Alliance from the NATO Undersea Research Center
(NURC, La Spezia, Italy) during April 2008 at different loca-
tions off the coast of Latvia. The main scope of the cruise was
to search for objects of interest (OOI), surveying the sea bottom
with the Muscle AUV (Fig. 8). Muscle is 3.5 m in length, has
a diameter of 0.52 m, weights 500 kg, and develops a nominal
speed of 1.6 ms~1. This AUV is equipped with a synthetic aper-
ture sonar (SAS) operating at frequencies of around 300 kHz
to perform large-area search and survey of the sea bottom. A
CTD-ER-1-0-700-200 from RD Instruments (Poway, CA) is
also mounted on the vehicle. On April 19, sea bottom surveys
were located in the Gulf of Riga (Fig. 9). A total of 6822 CTD
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Fig. 9. Area of operations and AVHRR-SST in the Gulf of Riga corresponding
to April 19, 2008. Colorbar units: degrees Celsius.

samples were conducted from 5- to 32-m depth while surveying
an area of around 1 km? searching for OOIs. A CTD cast was
done from the NR/V Alliance with a CTD SeaBird 911 in the
neighborhood of the surveyed area to provide a validation data
set. Fig. 10 summarizes the collected data set. Notice that the
CTD validation cast is out of the convex hull spanned by AUV
observations. Thus, estimating thermal values at this validation
location corresponds to an extrapolation instead of interpolation
process. No meaningful temperatures were recorded when the
vehicle surfaced. It has been hypothesized that this could be
the result of hydrodynamic interference (flow) along the hull
that prevented water through flow at the CTD intake. Thus,
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Fig. 11. CTD validation cast (solid line), climatologic profile (thick dotted
line), and area delimited by the standard deviation (thin dotted lines) [32] and
CTD cast done on April 6, 2009, in a nearby location [31].

information about the vertical structure of the water column is
only used from the downcast profile of the vehicle. In situ mea-
surements were complemented with an AVHRR multichannel
sea surface temperature (MCSST) image of 1.1-km resolution
from the same day (Fig. 9).

Fig. 11 compares the CTD validation cast with a climato-
logic profile obtained from CTD profiles regularly done during
1973-1995 in a station located 30 km northward from the sam-
pling area [32]. The figure also includes a CTD profile done a

NURC-PR-2012-003

0 T ; : 0 : .
(a) (b)
5 = .| 5 - . / .

10 g 10 ” .
~ 15 4 15 g
£ £ Lo
< / <
o o
a 3

20 —— 20 1

25+ b : 25} 1

—
30 ; . 30
— D—]———I
35 - L L 35 i
01 012 014 016 018 02 15 20 25 30

Speed (ms’™") Direction (°)

Fig. 12. (a) Current speed and (b) direction measured by the shipborne ADCP
during the sampling period.

year later, April 6, 2009, 15 km westward of the area of interest
[31]. Different issues can be highlighted from Fig. 11. First, sig-
nificant interannual valiability exists in the thermal conditions
of the region. This is explained by the relevance of air masses
to force local thermal stratification, the thermal structure of the
water column being very sensitive to atmospheric conditions.
These atmospheric conditions are dominated by short-term vari-
ations due to passing cyclones with a few days’ time scale, with
the addition of occasional blocking events, which typically lead
to longer calm and warm periods in late spring and summer.
Second, climatology does not seem representative of the tem-
perature structure found in the water column during this period
ofthe year. CTD casts measured during April 2008 and 2009 are
near-outliers and ourliers, respectively, of the statistical model
provided by climatology. This could result from the monitoring
strategy followed in the Guld of Riga during 19731995 [32]:
springtime conditions were normally recorded in May; summer-
time, in August; autumn, in October. Data coverage of other
months was rather random. Winter conditions were recorded
quite seldom because of the frequent ice coverage. Thus, cli-
matology is expected to be biased towards thermal conditions
characteristic of warm periods of the year.

Atmospheric forcing is the main source of short-term vari-
ability in the central part of the Gulf of Riga. Light breeze
conditions (1.6-3.4 m/s) dominated this area from April 15 to
April 19, resulting in a weak current field in the water column.
Fig. 12(a) and (b) displays the intensity and direction of the
current measured during the experiment with the shipborne
WH-300 acoustic Doppler current profiler (ADCP) installed in
the NRV Alliance. The background current field was northward
with a speed of 0.16 ms™!. This is an order of magnitude
slower than the speed developed by the sampling platform. On
the other hand, the spectrum of the AVHRR-MCSST imagery
is peaked at spatial scales of 10 km. This scale agrees with the
characteristic internal Rossby radius in the region (8 km). Thus,
a local advective time scale of around 5.5 x 10* s (15 h) is

9
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(c) the thin plate model without satellite data, and (d) the thin plate model with satellite data. Colorbar units: degrees Celsius.

expected. Unimodal seiches can induce significant variability at
the center of the Gulf of Riga due to its semienclosed geometry.
They are characterized by periods of 12240 s (3.4 h) in this
region. These characteristic time scales of the environmental
processes occurring at the location of interest are significantly
longer than the sampling time (1900 s), suggesting near-syn-
optic conditions during the sampling period.

Similar to the previous case, the domain was tessellated from
the surface to a depth of 35 m with prismatic elements of 2.3-m
height and triangular faces of approximately 150-m edges. This
generated a grid of 1020 prismatic elements (68 elements per
layer and a total of 15 layers) and 3140 nodes. This was the
maximum resolution allowed in a dual core PC at 2.66 GHz
and 2 GB of RAM. A computing time of 1587.9 s was re-
quired to run this numerical setup. Fig. 13(a)—(d) displays the
reconstruction of the isothermals of 5 °C, 4.5 °C, 4 °C, 3.5
°C, 3 °C, and 2.5 °C obtained with the membrane and thin
plate models without and with satellite information. A hori-
zontally stratified field is obtained from the membrane model
without satellite information [Fig. 13(a)]. The resulting surface
field is 1 °C cooler than the real one. Fig. 13(b) shows the re-
sults obtained when satellite data are incorporated into the mem-
brane model. Surface layers are now warmer, and a linear de-
crease with depth is observed. Notice the warm layer found
at the bottom of the domain. Fig. 13(c) reveals that the thin
plate model without satellite information results in a rather un-
structured thermal field. The vertical cast is not able to con-
strain the vertical structure of the water column alone. Instead,
bottom temperatures are extrapolated up to the surface. The re-
constructed field changes drastically when the satellite infor-
mation is integrated into the thin plate model [Fig. 13(d)]. An
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Fig. 14. (a) Comparison of the validation profile (solid line) with the pro-
files estimated from the membrane model without (dotted line) and with
(dashed—dotted line) satellite data. (b) The same as (a) but for the thin plate
model.

abrupt variation of the thermal field is observed in the most su-
perficial layers. A thermal doming is found at the intermediate
and deeper layers. This doming is an extrapolation of the tem-
perature variability observed by the Muscle AUV with coolest
temperatures located at the most distant corner of the domain.
Fig. 14(a) and (b) provides further analysis of the results.
Specifically, it compares the vertical profile of the reconstructed
field with the CTD data, at the location where the CTD cast
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was done. Concerning the membrane model, Fig. 14(a) shows
a nearly constant gradient of the reconstructed temperature pro-
file with depth. Incorporation of satellite information introduces
an offset in the linear dependence of the temperature with depth
but does not modify the rate of variability [Fig. 14(b)]. Fig. 14(c)
confirms the behavior previously observed for the temperature
field resulting from the thin plate model without satellite in-
formation. The profile extends the temperature measured at the
bottom layer almost up to the surface. A substantial change is
found when satellite data are considered [Fig. 14(d)]. The es-
timated profile shows a strong temperature gradient in the first
5 m of the water column that closely resembles the real pro-
file. The decreasing rate is smaller below 5-m depth. The model
overestimates the temperature at the middle layers and matches
the deepest observations.

A more quantitative measure of the performance of the es-
timation models is provided by the so-called normalized ex-
plained variance

’

=
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(T (2:) — T(zi)>2

1

:ﬁfl(rr(zi)_Tf
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here 7' (z;) and T (2:) are the estimated and observed temper-
atures at depths {,zL}Z\:pl, N, is the number of points used to
describe the profile, and 7T is the vertically averaged tempera-
ture in the observed profile. 122 is a dimensionless coefficient
that compares the explained variance with the total variance of
the data. It is commonly used as a metric to quantify the per-
formance of prediction and estimation models, involving a di-
rect comparison between observations and corresponding esti-
mations. Values of 22 close to one indicate good performance
in the estimation, while values equal or less than zero are indica-
tive of a poor estimation. 22 is 0.79 for the membrane model
without satellite data, —0.71 for the membrane model with satel-
lite data, 0.47 for the thin plate model, and 0.81 for the thin plate
model including satellite information. Results confirm the pre-
vious qualitative assessment of model performances, with es-
timations from the thin plate model with satellite information
being the closest to the observed profile. Notice the poor perfor-
mance obtained from the membrane model when satellite infor-
mation is considered. This fact results from the strong thermal
gradient found at the surface layer that invalidates the hypoth-
esis of negligible gradients assumed in the membrane model.
The model is imposed to fit surface temperatures that substan-
tially differ from the thermal conditions beneath the surface. A
positive offset in the thermal structure of the water column re-
sults in fit model estimations to imposed boundary conditions.

V. DISCUSSION AND CONCLUSION

This paper has investigated a mathematical framework to fuse
information gathered by remote sensors and AUVs to produce
a volumetric estimation of the observed field. Different factors
have been considered. First, it has been assumed that the AUV
does not perform a mission specially designed to obtain envi-
ronmental data. Instead, it is considered as an AUV “of oppor-
tunity,” i.e., an AUV that systematically collects environmental
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data regardless of its primary missions. This is most likely to
occur when employing AUVs in military operations.

A second problem when dealing with environmental data col-
lected by AUVs concerns the enormous size of the generated
data set. Roughly speaking, AUVs can provide a sample of an
oceanographic field every meter. Thus, data sets of hundreds of
thousands of samples can be generated easily during a mission.
Data analysis methods traditionally employed in oceanography
are limited to fairly moderate data sets. Alternative approaches
must then be considered. Summarizing, the scenario considered
here is that of providing a 3-D view of an oceanographic field
using remote sensing and data densely gathered on a general
1-D AUV trajectory.

The theoretical framework chosen to solve this problem is the
MAP probability. This procedure relies on merging the prior
knowledge with the likelihood estimation using a Bayes rule.
Smoothness of the field was assumed a priori. This generally in-
volves constraints on the first or second derivatives of the field.
These are called membrane and thin plate models, respectively.
Other assumptions on derivatives of higher order could be es-
tablished. However, they were discarded in this work for com-
putational reasons. The MAP problem has been solved using
a variational approach. Variational techniques provide an ele-
gant way to incorporate information about the boundaries, i.e.,
to introduce in the estimation information obtained by remote
Sensors.

Finite elements were employed to solve the variational
problem. A finite element described by a prismatic geometry
involving 15 nodes per element was considered. This element
is sufficiently accurate to compute first- and second-order
field derivatives. An interesting computational aspect of this
technique when applied to this estimation problem is that the
computational complexity depends on the number of nodes
of the mesh and not on the size of the data set. Thus, the
approach is able to process a huge amount of data. This is of
particular relevance in the problem considered here due to the
big data set generated by AUVs. Computational limitations
due to mesh size are more tractable with unstructured mesh
methods such as finite elements. For a constant number of
nodes, mesh resolution could be higher in the neighborhoods of
the AUV trajectory than in the remaining regions. The impact
of multiresolution on near- and far-field estimations remains an
open issue and will be considered in a future work.

The methodology has been first applied in an academic exper-
iment. Volumetric estimations using membrane and thin plate
models with and without satellite information were done from
data collected on a virtual AUV trajectory in the simulated en-
vironment. Several conclusions can be drawn from these nu-
merical tests. Both model approaches provide reasonable vol-
umetric estimations of the oceanographic field even when the
AUV follows trajectories quite unfavorable for environmental
sampling. Incorporation of satellite information improves esti-
mations done with the thin plate model but degrades the results
from the membrane model. In the latter, surface information
strongly affects the estimated temperature field at the deepest
layers. The prior energy

F(Q/J)Z'///IVQ/’led:Edydz
J



NURC Reprint

considered in membrane models takes the minimum value of
zero only if the field is spatially constant. Thus, it is assumed that
the spatial variability in the AUV data is partially originated by
random deviations from a background constant value. Dirichlet
boundary conditions at surface fix the value of the background
field biasing estimations beneath sea surface. Fields with con-
stant spatial gradients minimize the prior energy

F) = [ [ [ 12l dvdya:
/

considered in thin plate models. Thus, the observed variability
is hypothesized as deviations from a background field with a
constant spatial gradient. The impact of surface boundary con-
ditions is lower at deep layers because more degrees of freedom
are involved in the estimation. In both cases, the coarse resolu-
tion of the remotely sensed data can degrade the performance
of the method in those areas with significant small-scale vari-
ability. There, estimations can substantially differ from point
measurements. Only finer samplings of these regions with in
situ or remote sensors could correct this deficiency.

Estimation procedures were also validated in a field exper-
iment carried out by the Muscle AUV in the Gulf of Riga on
April 19, 2008. CTD data were collected by the vehicle while
performing a mine countermeasure mission. Unlike in the sim-
ulated experiment, only a vertical cast of the water column was
available due to unexpected blocking of the flow through the
CTD pipe when the vehicle moved towards surface. A pro-
file was estimated with the approaches considered in a location
where a CTD cast was previously done for validation purposes.

Measurements were assumed synoptic and so, no time depen-
dence was considered in the analysis. Synopticity is determined
by the characteristic time scales of the environmental processes
occurring at a given location, ranging from hours in some en-
ergetic coastal environments up to a week in the open ocean. It
limits the time scale of applicability of any estimation technique
that does not include time as variable. Estimation procedures
can be extended to deal with nonsynoptic measurements, but
their computational complexity and information requirements
about the physical processes in the region are substantially in-
creased. In this study, the synoptic time scale is expected to be
longer than the time required for the AUV to complete the sam-
pling. Weak wind and calm conditions dominated the region
before and during the experiment and thus, their induced vari-
ability was expected negligible. The estimated advection time
scale and natural seiche periods are longer than the time em-
ployed by the AUV to sample the area. These issues reinforce
the hypothesis that the reported experiment was done under syn-
optic conditions.

Membrane models with and without satellite data generate
estimations with a linear dependence of the temperature with
depth. Incorporation of satellite information introduces a tem-
perature offset in the whole water column to fit the surface con-
straints. Results shown strong impact that vertical undersam-
pling of the water column has on the estimations of the thin plate
model when satellite information is not considered. Bottom tem-
peratures are almost constantly extrapolated to the surface, gen-
erating an unrealistic thermal field in the domain. Incorporation
of satellite information substantially corrects the deficiencies
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found in the thin plate model estimations when remote sensing
data are not considered. The estimated profile captures part of
the features observed in the measured profile, showing a strong
thermal gradient in the first 5 m of the water column, continuing
with a linear relationship of the temperature field with depth and
matching the observed temperatures at the deepest layers.

Concluding, a guideline of applicability for the spline models
results from this study. In general, spline models are suitable to
estimate volumetric conditions from AUVs of opportunity when
no a priori knowledge of the variability in the region is available
and the sampling is synoptic and dense but unequally distributed.
Membrane models are more suitable than thin plate models when
vertical AUV casts are sparse and no satellite information is
available. Including satellite data in membrane models is not
recommended if the AUV trajectory is beneath the mixed layer.
Comparison between SST and CTD data collected by the AUV
can provide an initial estimation of the vertical thermal gradient,
and determine the convenience of using a membrane model.
Thin plate models are more appropriate when the AUV performs
several vertical excursions in the volume or when satellite infor-
mation is available. Incorporating satellite information to a thin
plate model has shown to be the best approach to infer volumetric
variability from AUVs of opportunity.
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