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Abstract Autonomous underwater vehicles (AUVs) have
gained more interest in recent years for military as well as
civilian applications. One potential application of AUVs is
for the purpose of undersea surveillance. As research into
undersea surveillance using AUVs progresses, issues arise
as to how an AUV acquires, acts on, and shares informa-
tion about the undersea battle space. These issues naturally
touch on aspects of vehicle autonomy and underwater com-
munications, and need to be resolved through a spiral devel-
opment process that includes at sea experimentation. This
paper presents a recent AUV implementation for active anti-
submarine warfare tested at sea in the summer of 2010.
On-board signal processing capabilities and an adaptive
behavior are discussed in both a simulation and experimental
context. The implications for underwater surveillance using
AUVs are discussed.

Keywords Autonomous underwater vehicle · Autonomy ·
Behavior-based robotics · Target localization and tracking ·
On-board processing · Multi-static active sonar

1 Introduction

In recent years, the interest in unmanned systems for military
applications has increased. Autonomous off-board sensor
systems, such as autonomous underwater vehicles (AUVs),
are attractive candidates to complement existing high-value
assets such as frigates, helicopters, and submarines in a vari-
ety of undersea surveillance missions. Their advantages
including reduced manning and risks for military personnel,
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allowing them to carry out other tasks. Furthermore, they
provide the potential for a networked system that is scalable,
persistent, and cost-effective.

Thanks to recent advances in unmanned vehicle autonomy
AUVs are becoming capable of operating without constant
external control. This can reduce operator load, but is also
necessary to overcome limitations imposed by the restricted
underwater acoustic communications. However, most AUVs
still lack many aspects to operate as fully autonomous agents
in a dynamic environment. These are [35]:

– situatedness: the ability to acquire information about the
environment solely through its sensors in interaction with
the environment,

– self-sufficiency: the ability to sustain itself over extended
periods of time,

– adaptivity: the ability to adjust itself to its environment,
learn from it or evolve.

These three features are critical for an AUV to survive and
successfully perform its missions in a dynamic environment.
Self-sufficiency is mainly dependent on vehicle endurance,
and thus battery capabilities and developments. This paper
will describe work that aims to improve the AUV’s situated-
ness and adaptivity for undersea surveillance applications.

1.1 Undersea surveillance

Undersea surveillance, as referred to in this paper, is the
task of monitoring the underwater environment for undersea
threats, in particular submarines. A specific scenario envi-
sioned for unmanned underwater vehicles is the “hold at risk”
scenario, i.e. monitoring all submarines that exit a port or
transit a chokepoint [13].
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To be able to use AUVs in undersea surveillance, they
need to be equipped with sensors to characterize the envi-
ronment, such as sonar. There are two forms of sonar; pas-
sive and active [26]. In passive sonar, noise that is emitted
by objects is detected by receiving hydrophones (underwater
microphones). Passive sonar has the advantage of covert-
ness, and has been used by submarines and surface ships to
conduct anti-submarine warfare (ASW) operations [6]. How-
ever, modern submarines have become very quiet (emitting
less noise), and regions of operational interest have shifted
from deep and open waters where ambient noise tends to be
low, to littoral areas with higher levels of ambient noise from
for example ship traffic and biological activity. These fac-
tors have placed greater limits on the effectiveness of passive
sonar, increasing the interest in active sonar [6].

In active sonar, a sonar source (transmitter) transmits a
sonar signal (ping), which reflects from objects in the envi-
ronment and is collected by a receiver. If the source and
receiver are co-located, the geometry is mono-static. Bi-static
geometries are those where one source and one receiver are
spatially separated. In a multi-static geometry there are mul-
tiple sources and/or multiple receivers.

Active sonar transmissions “insonify” or “illuminate” sub-
marines even if they emit little noise. While active sonar
transmissions are generally not covert, the receivers can still
be covert in a bi-static or multi-static scenario, and this is par-
ticularly compelling for the use of quiet AUVs with stealthy
communications. By using active sonar, ambient noise issues
are usually mitigated because the sound intensity levels of
the echoes tend to be higher than typical ambient noise lev-
els. Every signal has a signal-to-noise ratio (SNR), which
is determined by comparing the level of the received trans-
mission to the level of the received background noise. For
constant noise levels, the higher the initial sound intensity,
the higher the SNR, and the less obtrusive the background
noise is. However, active sonar suffers from reverberation,
primarily in littoral areas. Reverberation is the scattering of
the sonar signal sound energy by the sea floor and sea sur-
face, which can cause false alarms. If reverberation levels are
higher than ambient noise levels, we speak of a reverberation
limited environment.

Figure 1 shows a bi-static scenario. As explained, the
source and receiver are spatially separated. The receiver can
also be a static hydrophone, or hydrophone array, but in this
scenario an AUV towing a hydrophone line array is shown.
When the AUV receives the echo from the target, it can cal-
culate at what bearing (angle between towed array heading
and target), and at what range it thinks the target is, given
that it knows where the source was at the ping time, thus
creating a bearing-range contact. Contacts can be fed into a
tracker, for example based on a Kalman filter [4], that com-
bines (spatially) related contacts over time, producing tracks.
These tracks give a better estimate of the true object’s position

Fig. 1 A bi-static source–target–receiver example, where x and y are
the coordinate system, r is the range between target and receiver, and
θ is the bearing between the array heading φR (as measured counter-
clockwise from the x axis) and the target

and/or movement, and the uncertainties related to the mea-
surements.

Hydrophone line arrays are not capable of port–starboard
discrimination. Each sonar signal that is received can be pro-
cessed to determine its bearing and range, but it is not pos-
sible, without further actions, to determine at what side of
the array it was received. Therefore, every received contact
is interpreted as two contacts: one on each side of the array,
referred to as true and ambiguous contacts. By maneuvering
the array, for example by turning a certain amount to port
or starboard, the ambiguous contact’s geolocation is seen to
move significantly, whereas the true contact’s geolocation
remains the same. If the contacts are fed to a tracker, this
discontinuity of the geolocation of the ambiguous contact
may be exploited to attempt to break a track made on the
ambiguous contact.

The term broadside refers to the target bearing relative to
the hydrophone array. In the case of a vehicle towing an array
straight behind it, broadside is 90◦ relative to the heading of
the vehicle. When a target is at broadside to the array, the full
aperture of the array is applied to resolve the bearing, which
gives the highest bearing resolution. Conversely, a target at
or near endfire, i.e. directly behind (bearing 180◦) or in front
of (bearing 0◦) the array, will have a poorly resolved bearing
due to the poor bearing resolution [22,37]. For that reason,
it can be concluded that an optimal action for an AUV tow-
ing a hydrophone line array would be to move so as to get a
detected target broadside to its array. When a target is static,
one would thus expect a moving receiver to circle the target.
When a target is moving, results will depend upon the rela-
tive speed differences between target and receiver. But even
when an AUV can close in on a target, it will not be expected
to do so in a straight line towards it, because that would get
the target at endfire. These static and moving target scenarios
are explored in this research.

There are both opposing and supporting arguments for the
use of underwater vehicles for undersea surveillance, com-
pared to traditional methods. Advantages have been men-
tioned at the beginning of this section. The challenges or
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limitations of AUVs at the moment are their limited endur-
ance, the severely limited underwater acoustic communica-
tions, and the limited on-board processing power. The lack
of on-board processing power makes it challenging to per-
form processing at the same level of capability and sophis-
tication as is carried out on currently used platforms. Yet it
needs almost the same level of capability to be able to mea-
sure its environment through its sensors in order to adapt on
the acquired information while performing its mission. The
limited bandwidth and limited range of underwater acoustic
communications put severe constraints on communication
capabilities, whether implicit or explicit. This limits external
control, data sharing between vehicles and data sharing with
the command and control centre, as well as collaboration
approaches. All these limitations need to be overcome to be
able to reliably use AUVs in operational scenarios.

1.2 Related work

Mine countermeasures and port protection are other forms of
littoral (undersea) surveillance. Eickstedt and Schmidt [16]
describe the use of AUVs and low-frequency active sonar
for mine countermeasures. Initial results are given for a sin-
gle vehicle scenario, where on-board processing takes place
using mono-static sonar. Potential other applications for
AUVs in marine robotics include oceanographic measure-
ments, pipeline inspection, and sea-floor mapping. Research
into all these areas is also growing and includes subjects
such as path planning [27,34,39], cooperative localization
[2,18,41,42], and simultaneous localization and mapping
(SLAM) [5,17,25,33,40].

There have not been many publications regarding appli-
cations of AUVs for ASW, especially concerning the use of
active sonar. Early work at the Naval Postgraduate School
(NPS) describes the use of AUVs for target (torpedo) inter-
ception and docking [23]. However, the work described seems
to be simulation-based only. Target and AUV speeds of 50
knots are reported, which are unlikely given the currently
available AUVs [1,24].

Our collaborators at the Massachusetts Institute of Tech-
nology (MIT) have published about autonomous vehicles
using passive sonar for ASW, for example on improving tar-
get tracking through bearing stabilization [36], and demon-
strating a concept for multi-vehicle passive target tracking
and classification using autonomous surface vehicles [14,
15].

Another example of utilizing AUVs for target localization
is the work done at Virginia Tech [20,31]. Again, this seems
to involve only passive processing, as the vehicles operate
on an acoustic source [source level (SL) not mentioned] and
have bearing-only sensors. Active processing would imply
having range measurements as well. Results are reported of
one field trial with two vehicles. The vehicles share informa-

tion when possible, and keep an estimate of the other vehicle’s
location, sensor output and target estimate, called the “local
observer”. This allows them to optimize the combined target
localization.

Previous research in AUVs for ASW thus seems to mainly
address the use of passive processing. However, as outlined
in Sect. 1.1, passive sonar may not be sufficient for finding
current and future types of submarines in littoral waters. To
the best of the authors’ knowledge, our 2009 sea trial demon-
strated for the first time at sea the use of active sonar signal
processing on board an AUV for ASW. Furthermore, the
acquired contacts were used by a simple heuristic behav-
ior [21]. Results showed similar observable behavior as the
aforementioned experiments by Virginia Tech.

This paper discusses the developments for and experi-
ments performed at the 2010 sea trail, GLINT10 (where
GLINT is an acronym for Generic Littoral Interoperable Net-
work Technology.). The on-board signal processing suite has
been extended and behavior complexity increased. For the
2010 sea trial, the goal was to demonstrate that AUVs are
not only capable of extensive real-time on-board signal pro-
cessing up to a track level, but also of doing complex cal-
culations on the acquired information in order to change its
movements. This would further increase the AUV’s situat-
edness and adaptivity, taking the first steps to making them
available for high complexity missions in high complexity
environments that require fully autonomous agents.

The next section, Sect. 2 will describe the equipment used.
Section 3 describes the internal workings of our AUV and its
autonomy middleware. Section 4 describes the on-board sig-
nal processing capabilities and Sect. 5 the adaptive behavior
that were developed. Section 6 describes the scenarios that
were tested, and the simulation environment. The last two
Sects. 7 and 8 provide sea trial results per scenario, and a
discussion of these results as well as research aims for the
future.

2 Equipment

Two Ocean Explorer (OEX) AUVs were used, shown in
Fig. 2. These vehicles are approximately 4.3m long and
0.53m wide (21′′), currently with a maximum endurance of
7h at a speed of 1.2m/s (2.3kts). Their maximum operating
depth is 300m. Their navigation suite uses a fusion of inertial
navigation and a velocity estimate provided by an acoustic
Doppler velocity log (DVL). The DVL requires the AUV
to operate within a maximum distance of 200m above the
bottom in order to maintain bottom lock. For this reason
operations in areas with a water depth of around 100–150m
are currently preferred. Whenever the AUVs are underwa-
ter, communications to the command and control centre can
only take place through underwater acoustic communica-
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Fig. 2 The two OEX AUVs during deployment and recovery

Fig. 3 Left the DEMUS source during deployment; the eight free-
flooded ring transducers are clearly visible. Underneath the rings are
the electronics. Right the DEMUS radio buoy

tions. Therefore, each vehicle contains two acoustic modems;
an EdgeTech modem in the legacy navigation pressure ves-
sel, and a Woods Hole Oceanographic Institution (WHOI)
μModem [19].

The OEX AUVs were both deployed with the BENS slim
towed array (SLITA) [32]. The arrays are deployed approx-
imately 3.5m behind the vehicle. The BENS arrays have
three nested sets of 32 hydrophones each. The hydropho-
ne set used during the described experiments was optimized
for frequencies up to 3.47kHz (21cm spacing). One of the
towed arrays has four triplet sensors, which allow for port-
starboard discrimination, but these sensors were not used at
this time. Therefore neither vehicle had the ability to discrim-
inate the starboard from port side measurements. To aid in
the geolocation of the array behind the AUV, array naviga-
tion data, also referred to as non-acoustic data (NAD), from
compasses, pitch sensors, and depth sensors was collected
on each array.

For the active sonar experiments, the Deployable Experi-
mental Multi-static Undersea Surveillance System (DEMUS)
source, shown in Fig. 3, was used. This source is bottom-teth-
ered and was not moved during the experiment. The source
transmitted a 2.6–3.0kHz hyperbolic frequency modulated

Fig. 4 Our echo repeater, used to simulate an underwater target

(HFM) sweep, with a duration of 1 s, a 210dB SL, and a 12s
ping repetition rate. The DEMUS source was equipped with a
WHOI μModem to enable remote actuation via underwater
acoustic communications, and a radio buoy to allow wire-
less actuation and monitoring of the source, as well as GPS
synchronization for timing and accurate positional estimates.

All assets were deployed from the NATO Research Vessel
(NRV) Alliance and the Coastal Research Vessel (CRV) Leo-
nardo. The NRV Alliance served as the command and con-
trol centre during the experiments, while the CRV Leonardo
deployed an echo repeater for simulating a target (Fig. 4).
Before algorithms are tested with real targets, it is good prac-
tice to try the missions with a simulated target first, as fur-
ther discussed in Sect. 8. The echo repeater recorded the
waveforms received following the DEMUS transmissions,
for re-transmission with a user-specified amplitude gain after
a user-specified delay. During the GLINT10 sea trial experi-
ments described in this document, the echo repeater re-broad-
casts the incoming sonar signal with a 20dB (high) gain over
the received level, for the first two experiments. A gain of
15dB (medium high) was used for the latter two experiments.
These amplification levels served as a substitute for the tar-
get’s sonar cross-section or reflectivity. The echo repeater’s
delay was 2 s, and its deployment depth was 50m.

3 Vehicle control

The OEX vehicles are controlled via a frontseat–backseat
paradigm, as shown in Fig. 5. There are two computers on
each vehicle: the frontseat computer supplied by the manu-
facturer, and the backseat computer, also known as the pay-
load computer, that contains the on-board signal processing,
other related processes, and the autonomy middleware. The
backseat provides the frontseat with desired speed, heading
and depth commands. The frontseat attempts to execute the
navigation commands desired by the backseat and also passes
back the current navigation estimates.
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Fig. 5 The frontseat–backseat paradigm as used in MOOS-IvP. The
key idea is the separation of vehicle autonomy from vehicle control [8]

The MOOS-IvP middleware developed at the MIT, the
University of Oxford, and the Naval Undersea Warfare Center
(NUWC) [8], was used as the autonomy middleware and as
a framework for inter-process communications. The MOOS
or Mission Oriented Operating Suite is open-source middle-
ware that is based on a publish-subscribe architecture [8]. The
central ‘server’ application is called the MOOSDB. Although
not an actual database, it can be seen as an information
buffer that holds the current state of variables provided by or
required by all the on-board signal processing, communica-
tion, navigation, and autonomy processes. Processes can sub-
scribe to and/or publish variables to the MOOSDB in order
to exchange information. This approach is attractive, because
it is not necessary to write custom communication interfaces
between the processes. It is also useful because the contents
of the MOOSDB at any time can be logged. These logs can be
examined forensically for debugging and mission analysis.

The IvP helm is a MOOS application that enables behav-
ior-based autonomy. Behaviors can run simultaneously and
can be grouped into behavior sets, which are active based on
certain conditions. Each behavior is given a weight which is
defined at mission start but may also be adjusted dynamically
during the mission by on-board processes. IvP, a mathemat-
ical interval programming technique, combines the objec-
tive functions produced by active behaviors to determine a
globally optimal solution for each domain [7,8]. Objective
functions can be implemented over any of (in our case) three
domains: speed, heading and depth. Because the IvP search
is not only optimal but also fast, it is suitable for in-the-loop
control, at typically four iterations per second, to determine
the desired navigation commands.

4 On-board processing

Given that the AUVs must be able to react to a developed
understanding of the underwater scene, they need to be capa-
ble of on-board processing and interpretation of the output
of their sensors, principally their towed array. This on-board

Vehicle Computer

Payload Computer

frontseat

backseat

Vehicle 
Controller

Serial

pGetSlitaNAD

pArrayNavEstimator

SLITA NAD

UDP

SLITA data

iDAS

SLITA data

NTFS

pProcessSlitaBB

pDmhtTracker

pTrackEvaluator

pBistaticSource

pOEX

Fig. 6 The OEX’s active sonar on-board processing chain

processing takes place on the payload (backseat) computer.
The MOOS processes that make up the active sonar signal
processing suite are linked together as shown in Fig. 6.
There are three main streams of data flow:

– pOEX is the process that receives vehicle navigation as
well as conductivity, temperature and depth (CTD) infor-
mation from the front-seat computer, via a serial line.
This is parsed and published to the MOOSDB.

– pGetSlitaNAD and pArrayNavEstimator,
respectively, acquire and process the towed array’s NAD,
the data from the navigation sensors in the array. These
include heading, depth and pitch information (see
Sect. 2). pGetSlitaNAD acquires the raw NAD via
UDP and parses it. pArrayNavEstimator uses the
parsed NAD together with the vehicle’s navigation infor-
mation, to estimate the shape, location and heading of the
array at the time of a measurement. This is needed by the
tracker to geolocate the processed contacts.

– iDAS, the digital acquisition system interface, monitors
whether a new data file with the towed array’s acous-
tic data has been written. If so, pProcessSlitaBB
processes this data up to contact level. The contacts pro-
duced by pProcessSlitaBB are input to pDmht-
Trackerwhich publishes tracks. Tracks are subscribed
to by pTrackEvaluator that ranks them according
to the scheme described below.

pProcessSlitaBB pProcessSlitaBB is a MOOS
front-end to the active sonar signal processing algorithms
libraries. It includes standard active sonar processing ele-
ments [26];

– beamforming: the time series on each of the towed array’s
hydrophones is mathematically transformed in such a
way as to produce a time series per look direction (beam),

– matched filtering: for each beam, the time series is fil-
tered using a replica of the source’s outgoing pulse, result-
ing in a pulse-compressed time series,
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– contact formation: down each beam the matched filter
output is normalized to be able to calculate the SNR per
point, then a SNR threshold is applied to the normalized
data to form detections.

The libraries used are computationally optimized versions of
algorithms previously developed at our institution [3,21,28]
and by collaborators at the MIT [30]. The resulting contacts
are published to the MOOSDB in XML format, to which
pDmhtTracker subscribes.

pDmhtTracker Our distributed multi-hypothesis tracker
(DMHT) processes the contacts and generates tracks [11,12],
as introduced in Sect. 1.1. In our real-time usage of the
DMHT, the multi-hypothesis and distributed facilities are
currently not utilized. This essentially reduces the tracker
to an extended Kalman filter [4], with facilities for control-
ling track birth/death and contact/track association [11]. The
tracker also internally computes the geolocation using the
contact’s range and bearing, source location, array location
and array heading. Information on all tracks are published as
a track report to the MOOSDB in XML format.

pTrackEvaluator The track report, containing all active
tracks per ping, is subscribed to by pTrackEvaluator.
The track evaluator counts the amount of tracker report
updates (cntUpdates), and waits until it reaches the pre-
set numTracksUpdates1 number of track updates before
taking action.

As has been explained in Sect. 1 the towed arrays cannot
discriminate whether a contact is detected on the port or star-
board side of the AUV. Both true and ambiguous contacts are
passed into the tracker. Therefore, it is not desirable to act on
the first track formed by the tracker, which with a 50% prob-
ability may be tracking the ambiguous contact. Instead it is
advisable to try to break the track associated with the ambigu-
ous contact. To this purpose,pTrackEvaluator switches
the mode (as further explained in Sect. 5) to DISAMBIG-
UATE and waits again for numTracksUpdates updates.
It then assumes that tracks associated with the ambiguous
contacts have been broken, and switches the mode to OPTI-
MIZE. The optimization behavior then becomes active. Algo-
rithm 1 shows the algorithm in pTrackEvaluator in
pseudocode.

An empirical approach is taken to track ranking, no target
model is used yet for classification. Instead, track ranking
takes place under the assumption that the associated con-
tact is expected to have a high SNR, which was the case for
all experiments during GLINT10. Furthermore, because it is

1 ThenumTracksUpdates parameter can be set to any integer value
the operator might find desirable, the default is 15.

Algorithm 1 pTrackEvaluator
get AllT racks();
rank AllT racks();
if cntU pdates ≤ numT racksU pdates then

TRACKS = false // wait
else if cntU pdates ≤ numT racksU pdates ∗ 2 then

TRACKS = true
MIRROR_TRACKS = true // start disambiguating

else
TRACKS = true
MIRROR_TRACKS = false // start optimizing

end if

Fig. 7 Behavior modes and active behaviors

assumed that the ambiguous tracks are broken by the disam-
biguation maneuver, track length can also be used as a cue
to determine whether a track is of interest. The track ranker,
(rankAllTracks()), combines the SNR of the last asso-
ciated contact and the length of the track. A moving average
of the SNR data is kept for every track, using an exponentially
fading filter with a half-life time of 60s, which is augmented
at every tracker update. The averaged SNR is added with unit
weight to the length of the track, to create a composite track
score. A list of track identification numbers and their scores
is published to the MOOSDB, where it can be subscribed to
by downstream processes and behaviors.

5 Behaviors

Figure 7 shows the behavior modes and the behaviors acting
on those modes, as set up for GLINT10. At each iteration
of the IvP helm, variables in the MOOSDB are evaluated
to determine the current mode. The modes can be seen as
the state spaces defining what behaviors will be active on the
vehicle [8], and thus generally are the action-selection mech-
anism, describing the scenario and mission for the AUV. In
the current set-up, the mode changes within the prosecute
state are controlled bypTrackEvaluator, which changes
the variables that are monitored to determine the mode. Addi-
tionally, a mode change can also be brought about by endflags
of certain behaviors, other processes, or forced if an opera-
tor sends an acoustic message to the vehicle setting certain
variables.

Modes can be set up in a hierarchical fashion to allow more
general behaviors to be running irrespective of certain spe-
cific behaviors. As Fig. 7 shows, this hierarchy is used to run
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a constant speed and constant depth behavior whenever the
AUV is prosecuting (MODE == PROSECUTE), e.g. acquir-
ing and processing the active sonar data. However, depend-
ing on what it has been processed so far, different heading
behaviors are active at different times.

At the beginning of a mission, when the AUV starts pro-
cessing, but has not yet made any tracks, or at any other time
when the AUV has lost all tracks, the AUV is in a search
mode (MODE == SEARCH). After forming tracks, the AUV
switches to disambiguation mode (MODE == DISAMBIG-
UATE), as explained in Sects. 2 and 4. After disambiguation,
the AUV assumes it can now optimize for a single true track,
i.e. it assumes that the ambiguous contact’s track has been
broken. At this point it runs the behaviors that activate on the
optimization mode: BHV_MinLocErr.

Because all aforementioned modes (search, disambiguate
and optimize) are submodes of the prosecute mode, all behav-
iors whose activation conditions fire on the prosecute mode
(BHV_ConstantSpeed and BHV_ConstantDepth)
are still active, as well as possible behaviors operating on even
higher level modes [8]. BHV_MinLocErrwill be described
in detail in the next section, the other behaviors listed in Fig. 7
are, in short:

– BHV_ConstantDepth:
drive the vehicle at a specified depth [8].

– BHV_ConstantSpeed:
drive the vehicle at a specified speed [8].

– BHV_ConstantHeading:
drive the vehicle at a specified heading [8].

– BHV_Racetrack:
drive the vehicle along a (rectangular) racetrack. The
user can specify track location, orientation, length, width,
the distance-to-track-line tolerance, the angle at which
to approach the racetrack, speed, and whether or not it
should be traversed clockwise.

During the described missions, at any given time, a couple
of additional behaviors were active for vehicle safety. These
(standard IvP) behaviors are [8]:

– BHV_OpRegion:
a user-defined 2-D boundary box given by a convex poly-
gon, overall timeout, maximum depth, and minimum alti-
tude. If any of these are violated, all speed, depth and
heading commands are set to zero.

– BHV_MemoryTurnLimit:
limit the amount of turn possible per iteration, to avoid
vehicle turns that may cross its own path (n.b. useful for
towed array safety).

– BHV_AvoidObstacles:
2-D obstacle avoidance for (usually pre-defined and sta-

tic) obstacles. Obstacle avoidance distances are user-
defined parameters.

– BHV_AvoidCollision:
3-D collision avoidance for (user-defined or acoustically
received) contacts. Collision avoidance distances are
user-defined parameters.

– bhv_abort:
a combination of a waypoint and constant depth behav-
ior for safe abort to a user-defined waypoint, followed
by a combination of a go-to-depth and constant speed
behavior for surfacing.

5.1 BHV_MinLocErr

BHV_MinLocErr aims to minimize the error in localization
of a track, thus optimizing the AUV’s position for optimal
target localization. A localization error covariance matrix is
constructed from the estimated target position variances, and
the x and y target estimate covariance, as derived in [10].
The optimization measure, which needs to be a maximiza-
tion function, is the inverse of the trace of the localization
error matrix:(

tr

([
σ 2

xT σxT yT

σxT yT σ 2
yT

]))−1

= 1

σ 2
xT + σ 2

yT

(1)

The necessary variances over x and y for a given track can
be calculated, as [10]:

σ 2
xT = σ 2

x R + cos2(θ + φR)σ 2
r

+ r2 sin2(θ+φR)(σ 2
θ +σ 2

φR )+2 cos(θ+φR)σx Rr

−2r cos(θ + φR) sin(θ + φR)(σθr + σφRr ) (2)

σ 2
yT = σ 2

y R + sin2(θ + φR)σ 2
r

+ r2 cos2(θ+φR)(σ 2
θ +σ 2

φR )+2 sin(θ+φR)σy Rr

+ 2r sin(θ + φR) cos(θ + φR)(σθr + σφRr ) (3)

where (see Fig. 1)

– θ is the measured bearing,
– φR is the array heading,
– r is the range between target and receiver,

and

– σ 2
x R and σ 2

y R are the variances in measured receiver x and
y positions,

– σ 2
r is the variance in range between target and receiver,

– σ 2
θ is the variance in measured bearing,

– σ 2
φR is the variance in measured array heading,

– σx Rr and σy Rr are the covariances between, respectively,
receiver x or receiver y position error and the target–
receiver range error,
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Table 1 BHV_MinLocErr parameters: measurement uncertainties

Parameter Default input value

σsource 15,15,0 (m)

σreceiver 15,15,0 (m)

σendfire_width 18.2 (◦)

σarrayheading 1.0 (◦)

σpropagationtime 0.1 (s)

σsoundspeed 7.5 (m/s)

Standard deviations are related to the towed array’s characteristics,
except for the standard deviation on sound speed

– σθr is the covariance between bearing error and target–
receiver range error,

– σφRr is the covariance between array heading error and
target–receiver range error.

To calculate these variances, not only are the receiver posi-
tion, source position, and estimated target position necessary,
but also the variances in all of these, as well as variances
in sound speed, and propagation time [10]. Table 1 shows
the behavioral parameters, used during GLINT10. These are
guided either by the characteristics of the towed array or the
source waveform, see Sect. 2. Part of these parameters, such
as the variance in target–receiver range and the variance in
the bearing, need to be dependent on the SNR at the target
range and azimuth. The SNR, for adapting these parameters
for future predictions, is calculated using a simple equation
that combines SL, target strength and the relative geometries
of the source, target and receiver [9,38]. Parameters not listed
in Table 1 are either calculated or retrieved from the MOOS-
DB, published there by on-board processes such as pOEX.

The behavior parameters can influence the size of the
localization error, because they determine the size of the
errors in the measurements. However, changing the parame-
ters would not change the general shape of the function, nor
where its maxima lie. Changing σend f ire_width can change
the smoothness of the error localization function, but again,
maxima will remain in the same location. The most domi-
nant terms that determine the localization error function are
the directivity of the towed array (broadside is best, endfire
worst, see Sect. 1.1), and the blanking region, i.e. the area
where the target is between source and receiver and thus can-
not be detected. Range, and as a consequence the strength of
the target response, is of much less significance to the local-
ization error than the array directivity. Therefore it can be
expected that the vehicle will mostly try to keep any target at
broadside to its array, to get the most accurate localization.

At each iteration of the IvP solver, which as a default is
four times per second, Eq. 1 is calculated for the lay-outs
that could be expected at the next ping time, for all possible
headings that the AUV can take at the current time. Heading

Fig. 8 Individual BHV_MinLocErr (left) and collective (right) objec-
tive functions plots from IvP, taken while the AUV is optimizing. Red
(around 65 and 235 degrees in the individual plot, and the slice around
240 degrees in the collective plot) equals high preference and blue
(around 155 and 335 degrees in individual and outer boundaries of col-
lective plot) equals low preference. Speed is displayed along the radius,
heading in 360◦, depth is not shown

values are varied between 0◦ and 360◦, using 0.5◦ increments.
It is assumed that the AUV can change to these headings at
the current time, and then follow a straight movement at the
current velocity to the next ping position. The resulting objec-
tive function only affects the AUV’s heading, and is therefore
used in combination with constant speed and constant depth
behaviors, as explained at the beginning of this section. Note
that even though the AUV’s speed could potentially be var-
ied, given the 1.2m/s maximum speed of the vehicle and the
fact that the AUV needs to operate at least at 0.7m/s to prop-
erly tow the array, the potential benefits of a speed behavior
at this time are believed to be minimal.

Figure 8 shows the objective functions used by IvP to
determine the desired speed (along the radius) and heading
(angle). The left figure shows the objective function cre-
ated by BHV_MinLocErr, which as mentioned above has
no speed sensitivity. The fundamental ambiguity due to the
equal localization error when holding the target on broad-
side, either to the port or starboard side, to its towed array, is
clearly visible. The right figure shows the collective objec-
tive function that is created by IvP. For this example, the
collective function consisted of the BHV_MinLocErr, a con-
stant speed behavior, constant depth behavior, and a turn limit
behavior. The turn limit behavior [8] limited the desired head-
ing change to plus or minus 15◦ of the current heading. For
the experiments described in this paper, this behavior has a
weight of 200 versus a weight of 100 for the other active
behaviors, and thus has a profound effect, as can be seen by
the raised slice in the collective objective function plot.

6 Scenarios

In June/July 2009 and July/August 2010, the GLINT09 and
GLINT10 sea trials were held. Both trials were held in the
Tyrrhenian Sea, south of the island of Elba and north of Porto
Santo Stefano. This area is suitable for our AUV operations
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Fig. 9 Static target scenario with anticipated AUV movement. The
OEX starts in a southbound racetrack, the ‘target’ (CRV Leo-
nardo+echo repeater) is static, as are the NRV Alliance and the DEMUS
source. Grid size 1,000m

Fig. 10 Dynamic target scenario with anticipated AUV and ‘target’
movement. The OEX starts in a westbound racetrack, the ‘target’ (CRV
Leonardo+echo repeater) starts to the northeast in a westbound move-
ment. The NRV Alliance and DEMUS source are static. Grid size
1,000m

because of its relatively flat bathymetry and its shallow water
depth of approximately 110m. As the experiments performed
during GLINT09 have been described in [21], we focus here
on technologies and approaches developed within the past
year, as well as the results obtained during the GLINT10
experiment.

The goal during the GLINT10 sea trial was to demonstrate
the minimize localization error behavior at sea for two sce-
narios, preceded by consistent demonstrations in simulation.
The scenarios were: (1) optimizing for a static target, and
(2) optimizing for a moving target. Figure 9 shows the set-
up for the static target scenario, and Fig. 10 for the moving
target scenario. In all cases the DEMUS source was static
(bottom-mounted), as was the NRV Alliance, which had the
command and control centre on board.

The general content of each experiment was as follows:
the AUV (either one of our two OEXs) would start the exper-
iment driving in a racetrack pattern. This is a rectangular
run with, for example, a length of 1,200m and a width of
150m. Then the source would be turned on and in the case of
the moving target scenario, the target (CRV Leonardo+echo
repeater) would start to move on a straight line course. The
AUV would then process the active sonar data, and after
the predefined number of updates, make the disambiguation
movement. The disambiguation behavior was a simple con-
stant heading behavior that changed the heading to the cur-
rent heading plus or minus a present angle (default 30◦). After
following the disambiguation heading for the same number
of track updates, it would start optimizing for the highest
scored track for 30min, before returning to its start position.
The mode changes were initiated by pTrackEvaluator,
as explained in Sects. 4 and 5.

6.1 Simulation environment

The simulation environment consists of:

– all processes that run at a field trial, i.e. the on-board
processing suite, and all behaviors that will be used,

– MOOS-IvP processes for viewing the simulation,
– MOOS-IvP processes for simulation of hardware not

present, for example a vehicle simulator, an acoustic
modem simulator, a target simulator, etc.,

– an acoustic data stimulator.

The acoustic data stimulator generates time series level
acoustic data files, as a substitute for the real acoustic data
normally received on the towed array. A simple data stimu-
lator was used that simulates direct blast and target returns
(including direction of arrival on the array and transmission
loss based on a simple spreading model), white Gaussian
background noise, and additional bandlimited, exponentially
decaying white Gaussian noise for reverberation.

7 Results

Results were obtained for both the static and moving target
scenarios. Sections 7.1 and 7.2 describe the results obtained
from the sea trial, and provide comparisons with simulation
results per scenario. Behavior performance as well as tracker
performance is discussed.

7.1 Optimizing for a static target

During GLINT10, optimization for the static target was dem-
onstrated at sea three times. Figure 11 shows a screenshot
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Fig. 11 Command and control centre (alliance) display, third
demonstration static target; the AUV (oex_harpo/e-oex_2) is opti-
mizing for a static target (leonardo), using on-board active sonar
processing (source: demus_source). The AUV’s position updates
are received via two acoustic modems, indicated by e-oex_2 (light
blue) and oex_harpo (red). trk_*’s are tracks sent from the AUV
via acoustic communications to the command and control centre dis-
play. Grid size 100m

from the command and control centre for the third dem-
onstration of the OEX optimizing on the static target. The
OEX started in a north to south racetrack from approximately
[7000, 4000], going 1.0m/s. After approximately 10min, the
DEMUS source was turned on, and the OEX started active
sonar processing. After 15 updates from the tracker, the OEX
added 30◦ to its current heading for disambiguation. After
following the ‘disambiguate’ heading for another 15 track
updates it started optimizing. All the while, the CRV Leo-
nardo was simulating a static target at [5500, 4000] using the
echo repeater. Figure 11 shows that the OEX made a circular
movement around the CRV Leonardo.

Discrepancies between the red and blue AUV paths dis-
played are due to lags in the status updates received through
the acoustic communications from the two separate acoustic
modems. The OEX actually went to a point a little south of
the most south-west point on the red path, then started return-
ing to the start position, receiving an update on the blue path,
but was then sent to a loiter. At the loiter location updates
were received again from both modems.

Table 2 shows the tracker performance for the three exper-
iments. Performance during the first two experiments was
not as good as for the third experiment. For the first demon-
stration, the payload computer was not receiving the towed
array’s navigation data from the vehicle computer, because
of a configuration error on the front-seat computer. In such a
scenario, as a fall-back, the array heading is estimated using
a time-delayed version of the vehicle heading (‘worm-in-
a-hole motion assumption’). Thus, errors in array heading
estimation are likely to have decreased tracker performance.
Overall, the tracker still got the right track 96.64% of the time
the AUV was optimizing. Configuration was double-checked
for future experiments to prevent the same error from hap-
pening again.

Table 2 Tracker performance at sea for the static target scenario

Amount Percentage

Experiment 1

Unique tracks formed 37

Tracks followed 7

Track followed on target (updates) 144/149 96.64

Track followed off target (updates) 5/149 3.36

Experiment 2

Unique tracks formed 40

Tracks followed 10

Track followed on target (updates) 133/149 89.26

Track followed off target (updates) 16/149 10.74

Experiment 3

Unique tracks formed 36

Tracks followed 1

Track followed on target (updates) 149/149 100

Track followed off target (updates) 0/149 0

A track is ‘on target’ when it was (mostly) within 500m of the target’s
position

For the second demonstration, more ‘wrong’ tracks were
followed than in the previous demonstration. Although still
approximately 89% of the followed tracks were on the target,
performance severely degraded in comparison to the other
two at-sea demonstrations. Post-mission analysis showed that
this degraded performance was due to a problem with noise
level estimates in the signal processor’s detector. High range
sidelobes of the loud target signal contaminated and increased
the background noise estimate near the direction of arrival.
These range sidelobes were not present, or below reverbera-
tion levels, for directions away from the direction of arrival.
When the data was normalized with these noise estimates, the
data near the direction of arrival was suppressed by the over-
estimated noise, but data off the direction of arrival was not.
The result was a flattening of the main lobe on the direction of
arrival leading to a poor bearing estimate. We mitigated this
effect during the sea trial by decreasing the echo repeater’s
amplitude gain from 20 to 15dB. Detectors are an active area
of research, and this continues to be explored in our research
as well as different methods of normalization, see Sect. 8.1,
to prevent such errors for future experiments.

Once the echo repeater’s amplitude gain was decreased,
tracker performance for the third demonstration was, from
a behavioral perspective, optimal. 100% of the time that the
AUV was optimizing, it followed the same track, which was
near the target.

Sea trial versus simulation results for a static target The per-
formance of the behavior was tested many times in simula-
tion, to demonstrate robustness and consistent performance,
before it was tested at sea. The experiments at sea were done
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Fig. 12 Overlay of field demonstrations on simulation results for the
static target scenario. Inter-simulation differences are due to differences
in start time of the data stimulator

to demonstrate performance under real conditions. Twenty
simulations were done for each scenario. For all static tar-
get simulations the same set-up and settings were used, but
the starting time of data stimulation (and thus data acqui-
sition) was varied, because this was a factor most likely to
be different during the field trial. Different start times lead
to different layouts of all assets at the time the AUV starts
acquiring, tracking and optimizing, therefore this was var-
ied for robustness testing. Over the 20 simulations, the mean
start time was 590 s, with a standard deviation of 114 s. Given
that the AUV was going 1.0m/s, the standard deviation for
the AUV’s position was 114m.

Figure 12 shows the sea trial performance and simulation
results for a static target in one plot. The 20 simulation results
are shown in dotted light gray, versus dashed colored paths
for the at-sea experiments. For the 20 simulations the amount
of unique tracks formed had a mean of 4.05 with a standard
deviation of 1.47. The amount of tracks followed had a mean
of 1.05 with a standard deviation of 0.22.

Figure 12 shows that in simulation the AUV basically
makes a perfect circle around the static target. For illustration
purposes, a semi-dashed black circle has been drawn around
the target position (at a radius of approximately 1650m).
In the first two demonstrations, tracks broke and new tracks
formed at different locations, in the case of the second exper-
iment even at the ambiguous track’s location. In those cases
the performance was not as good as for the third demonstra-
tion where there were no problems with tracker performance.
In the third demonstration, the AUV followed one track near
the actual target position for the whole time it was optimiz-

Fig. 13 Command and control centre (alliance) display, first dem-
onstration moving target; the AUV (oex_harpo/e-oex_2) is opti-
mizing for a moving target (leonardo), using on-board active sonar
processing (source: demus_source). The AUV’s position updates
are received via two acoustic modems, indicated by e-oex_2 (light
blue) and oex_harpo (red). ttm_* indications are radar tracks

ing, and performance compares exceptionally well to what
was demonstrated in simulation.

The circular behavior is due to the previously explained
(Sects. 1.1 and 5) dominance of the towed array’s directiv-
ity. The gain that can be achieved in SNR by moving closer
does not weigh up to the gain in localization by keeping the
target at broadside. If the aim of the experiment is to get the
most accurate localization, then the current behavior would
do well. However, if there would be a need for the vehicle
to zone in on a target, integration of a more precise calcula-
tion of SNR could increase the importance of this term and
thus allow for the vehicle to do so, as discussed in Sect. 8.1.
In addition, one has to realize that the current behavior only
looks one ping interval into the future and therefore may not
realize the potential gain that could be achieved further into
the future, also discussed in Sect. 8.1.

7.2 Optimizing for a moving target

During GLINT10, one field experiment was performed to
demonstrate optimization for a moving target. A screenshot
of this successful demonstration is shown in Fig. 13. The
OEX started in an east to west racetrack from approximately
[7500, 5000], going 1.0m/s. After approximately 15min, the
DEMUS source was turned on, the OEX started active sonar
processing, and the CRV Leonardo started moving west-
bound from [9000, 6500] at 2.0m/s towing the echo repeater.
After 15 updates from the tracker, the OEX added 30◦ to
its current heading for disambiguation. After following the
‘disambiguate’ heading for another 15 updates it started opti-
mizing.

When the OEX was optimizing it first moved closer to the
Leonardo’s track, because it was still ahead as the Leonardo
was further east than the OEX. However, as the Leonardo
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Table 3 Tracker performance at sea for the moving target scenario

Amount Percentage

Unique tracks formed 14

Tracks followed 1

Track followed on target (updates) 149/149 100

Track followed off target (updates) 0/149 0

A track is ‘on target’ when it was (mostly) within 500m of the target’s
position

drew to the same longitude as the OEX, the OEX started to
move in parallel, and as the Leonardo moved ahead, the OEX
moved away in an approximately hyperbolic movement, try-
ing to keep the Leonardo at broadside to its towed array.

Table 3 shows tracker performance during optimization.
As for the third demonstration in the static scenario, results
were optimal from a behavioral perspective. During the AUV
optimization period, the vehicle optimized all the time for a
track near the actual target, and the track did not break.

Sea trial versus simulation results for a moving target Fig-
ure 14 shows the sea trial performance and simulation results
in one plot for our AUV optimizing for a moving target.
The moving target scenario was also tested for robustness
and consistent performance in simulation. Again, 20 sim-
ulations were done, and starting times of data stimulation
(and data acquisition) were varied. Over the 20 simulations,
the mean start time was 777s with a standard deviation of
129s. This corresponds to a standard deviation of 129m in
AUV position, and a standard deviation of 258m in the target
position, given that the AUV was moving at 1.0m/s and the
target at 2.0m/s. For all 20 simulations the number of unique
tracks formed had a mean of 4.55 with a standard deviation
of 1.15. The number of tracks followed had a mean of 1.00
with a standard deviation of 0.00.

Figure 14 shows the field performance compared to simu-
lations. For all, the target moved from northeast to northwest,
approximately 1,500m North of the AUV. All demonstra-
tions show an approximately hyperbolic movement, caused
by the dominance of array directivity (towards minimizing
localization) over other factors, combined with the higher tar-
get speed as the target came alongside and then drove ahead
of the AUV. Given the limited speed of the AUV in respect to
the target, this may not be undesirable, because it would not
be able to catch up with it, as further discussed in the next
section.

8 Conclusion

Autonomous off-board sensor systems are attractive candi-
dates to complement high-value assets in undersea surveil-

Fig. 14 Overlay of field demonstration on simulation results for the
moving target scenario. Inter-simulation differences are due to differ-
ences in start time of the data stimulator

lance, among others for the potential to reduce manning, per-
sonnel risks, and the ability to integrate them into a scalable,
persistent, and cost-effective networked system. AUVs for
one, are currently not yet capable of operating autonomously
in potentially complex dynamic environments. The limited
bandwidth and limited range of underwater acoustic com-
munications put severe constraints on communication capa-
bilities, whether implicit or explicit, increasing the need for
high levels of autonomy. To that purpose, their situatedness,
adaptivity, and self-sufficiency should be improved. The use
of AUVs with on-board passive processing for ASW has
previously been addressed, but on-board active sonar signal
processing has received little attention.

In 2009, a first demonstration of on-board active sonar
signal processing on an AUV for ASW was demonstrated.
This encompassed processing up to contact level, and a sim-
ple heuristic adaptive behavior. The goals for our 2010 sea
trial were threefold:

– to demonstrate the extended on-board signal processing
suite,

– to increase behavior complexity, i.e. to be able to do full
bi-static calculations on-board the vehicle, at the stan-
dard rate of 4Hz,

– to demonstrate good performance at sea, and compare
this to what has been demonstrated in simulations.

These steps would increase the AUV’s situatedness and adap-
tivity, in order to prepare them for high complexity missions
and/or environments.

This paper has described the on-board signal processing
including a tracker, and an adaptive behavior, which were
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successfully implemented. The resulting system was tested in
simulations, showing consistent performance in both a static
target and moving target scenario when varying the starting
times of data stimulation. Both scenarios were elaborately
tested in simulations. Due to both time and cost overhead of
sea-going experiments, this is an integral part of our research.
Because the data stimulator produced simplified data com-
pared to what could be expected at sea, especially in terms
of bottom loss effects and clutter, these results still had to be
validated at sea.

During GLINT10 the static target scenario was success-
fully demonstrated three times, two of them showing
potential issues that can be encountered in a real situation.
Performance for the third demonstration was comparable
to simulation performance. The moving target scenario was
only demonstrated once, but was successful, showing good
tracker performance and the OEX AUV demonstrating the
predicted trajectory.

8.1 Discussion and future work

There were some specific problems that were encountered
during the recent at-sea experiments. The first demonstration
against the static target suffered from a configuration error. To
that purpose, more templates with default values, from which
missions files can be generated, will be used. Furthermore,
checklists will also be introduced to reduce the likelihood
of configuration errors. Following the discussion in Sect. 7.1
regarding the degraded results in the second demonstration,
we intend to reduce sidelobe contamination, by experiment-
ing with other noise estimation methods and improving the
detector. Another simpler solution to avoid this problem, is to
use unnormalized data for estimating the bearing of contacts
above a certain level.

Regarding the observable behavior for both the static and
moving target, it has yet to be proven whether or not this is
the best approach to undersea surveillance. As mentioned in
Sects. 7.1 and 7.2, this will depend upon operational goals, as
well as upon the capabilities and the amount of assets. Cur-
rently, AUVs have limited speed and endurance, which limits
their possible usage. The approach was taken to improve tar-
get localization, because in the case of a moving target, it
was known that there would be little opportunity to actu-
ally intercept. The same behavior was for reference tested
on a static target first. Why the AUV did not circle inwards
to this target is dependent on a couple of factors. For one,
as explained, the minimization of the localization was domi-
nated by array directivity and SNR gain had little effect. This
could perhaps be made of greater importance by integrating
a more comprehensive SNR estimate. Other work has inves-
tigated a behavior that has been designed to optimize AUV
heading based on maximizing signal excess [29] and plans

are underway to integrate its more comprehensive SNR esti-
mate into BHV_MinLocErr.

Secondly, the other issue with the developed behavior, and
reactive systems in general, is that the possible gain that can
be achieved in the far future, is not considered. The devel-
oped behavior only tries to achieve the best possible position
and heading it can achieve at the next ping time. However,
it may be that it can eventually reach a higher pay-off by
going through a locally suboptimal movement. This will also
become more apparent when working with multiple vehicles.
To that purpose, it may become necessary to introduce more
advanced reasoning unto the vehicles, for example to coor-
dinate tasks and allow for a handover. Reasoning may in
any case turn out to be necessary to compensate for the lack
of knowledge introduced by the limited underwater acoustic
communications. Furthermore future research will involve
studies on extending behaviors to, or developing them for, the
speed and depth domains. Simulation studies should allow
for experimenting with potential capabilities of future AUVs,
beyond current hardware limits.

Our research has shown that on-board processing can
already be performed up to a track level. However, all cur-
rently described experiments have been performed on a simu-
lated target with relatively high amplitude gain. The currently
used evaluation scheme is empirical, and would most likely
not be sufficient against a real target. To acquire more infor-
mation, the next step in sensor processing will be to include
continues wave (CW) processing. CW processing will lead to
Doppler measurements on the contacts, which provide addi-
tional clues for classification. Thus we continue our efforts
towards developing a heterogeneous sensor network for lit-
toral surveillance.
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