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Abstract - Estimating remaining targets after some

attempt has been made to detect an overall, unknown

number of targets is critical to determining the po-

tential threat associated with these remaining tar-

gets. This paper presents a Bayesian approach to

calculate the distribution on the number of remain-

ing targets given the sensor performance and the

number of targets detected. For a single sensor, a

closed form posterior distribution on remaining tar-

gets is derived. For multiple sensors, the correspond-

ing posterior distribution is developed. A naive im-

plementation of this calculation is shown to be com-

putationally prohibitive, and an efficient means for

performing the calculation is presented.

Keywords: sensor management, Dirichlet-Multinomial

hierarchical model.

1 Introduction

In Mine Countermeasure operations, sensors with an
associated probability of detection attempt to find an
unknown number of mines on the seafloor. After these
operations, some estimation must be made of the num-
ber of remaining mines in order to predict the remain-
ing threat in the area. The combined efforts of multiple
sensors allocated to sub-areas, each having an associ-
ated probability of detection, must also be considered.

An estimation of the remaining targets after a cer-
tain level of search is required to evaluate the poten-
tial threat associated with these remaining targets. We
consider the problem of estimating an unknown num-
ber of stationary targets based on the number of tar-
gets detected by a given sensor and the probability
of detection associated with this sensor. The problem
of determining an unknown number of targets is then
considered for a larger area where many sensors are
working independently in several sub-areas of the over-
all area. The quantity of interest is the total number

of unknown targets in the entire area. Given uniform
sensor performance, the algorithm provides the same
results for a single sensor working in an area, or multi-
ple sensors working in several sub-areas or this original
area when the total number of targets detected is the
same.

A standard application of Bayes’ Theory is to esti-
mate the unknown success probability p of the Bino-
mial distribution for a population of a fixed size given
a certain number of observed successes. Looking at the
Binomial distribution from another perspective, an es-
timation can also be made of the population size based
on a given success probability and number of observed
successes. In general, the problem of estimating the
number of trials n for the Binomial distribution has
received little attention [2].

The distribution on remaining targets is developed
in Section 2. For the single sensor case, assuming a
infinite uniform distribution on the total number of
targets, the posterior distribution is shown to follow a
Negative Binomial distribution. The posterior distri-
bution on remaining targets is then developed for mul-
tiple sensors. The prior distribution should be chosen
in a way to give the same results as the single sensor
case under certain circumstances. This requires the
introduction of a hierarchical model to provide a flexi-
ble prior distribution giving intuitive results. Section 3
sets up the calculations of interest as expected values.
The separable form of these expectation calculations
is then exploited in Section 4 giving an efficient way
of calculating the expected values for the quantities of
interest.

2 Distribution on targets re-
maining

A Bayesian approach is used to determine a distribu-
tion on targets remaining in the area. Before develop-
ing this distribution, we review the basic definitions in
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Bayesian inference [4, 5] . We would like to make state-
ments about an unknown parameter θ given data y.
The joint probability distribution P (θ, y) follows from
the definition of conditional probability:

P (θ, y) = P (θ)P (y
∣∣θ), (1)

where P (θ) is referred to as the prior distribution and
P (y

∣∣θ) as the sampling distribution, or the likelihood
function. Bayes’ rule follows from another application
of the definition of conditional probability:

P (θ
∣∣y) =

P (θ, y)
P (y)

=
P (θ)P (y

∣∣θ)
P (y)

, (2)

where P (y) =
∑

θ P (θ)P (y
∣∣θ) sums over all possible

values of θ. The symbol “∝,” proportional to, will be
used for the unnormalized posterior density

P (θ
∣∣y) ∝ P (θ)P (y

∣∣θ), (3)

as considering terms up to a constant of normaliza-
tion can be beneficial. When the unnormalized pos-
terior density is not a recognizable form (and there-
fore the constant is not known), the constant of nor-
malization can be computed by summing (or inte-
grating in the case θ is continuous) the unnormal-
ized posterior density over the entire sample space
P (y) =

∑
θ P (θ)P (y

∣∣θ) .

2.1 Single Sensor: the Posterior Distri-
bution

Consider the game where a fair coin is flipped an un-
known number of times and the resulting number of
heads is five. Intuition would suggest that the coin
was flipped about ten times, but some variation on
this would be expected. Observing only the number of
heads from an unknown number of coin flips is the same
problem as having observed a certain number of targets
from an unknown number of total targets. Assuming
a probability of detection p for a given sensor which
has detected m targets, the distribution of the total
number of targets is Binomial(n, p) where n = m + r
and r represents the number of remaining targets.

In order to derive a closed form posterior distribu-
tion, an improper (infinite), uniform prior distribu-
tion on the number of targets in the area is chosen,
n ∼ DiscreteUniform(0,∞). This can be thought of
as limN→∞

1
N+1 for n = 0, 1, 2, . . .. Computation-

ally, DiscreteUniform(0, N) for some large N would
give similar results as the improper prior. In either
case, as N does not depend on n, this term can be
considered as the constant of normalization. Using (3)
to estimate the unknown n based on observed m, the
posterior distribution for n given m is:

P (n
∣∣m) ∝ P (n)P (m

∣∣n) (4)

∝ P (m
∣∣n) (5)

∝
(

n

m

)
pm(1− p)(n−m) (6)

∝
(

n

m

)
pm+1(1− p)(n−m), (7)

where (7) follows from the fact that p is a con-
stant with respect to n. This is the kernel of the
NegativeBinomial(m + 1, p) for n = m,m + 1, . . .,
and putting this into the context of remaining tar-
gets r = n −m, r ∼ NegativeBinomial(m + 1, p) for
r = 0, 1, 2, . . ..

Thus, assuming the improper uniform prior, given
the observation of five heads in an unknown number of
coin flips of a fair coin, the number of tails follows a
NegativeBinomial(6, 0.5) distribution.

2.2 Multiple Sensors

Assume now that for each sensor i ∈ 1, . . . , T working
in some sub-area, there is an associated number of de-
tected targets mi and probability of detection pi. To
give some intuition to the problem, suppose we have
two weighted coins, coin one with associated probabil-
ity p1 of landing on heads, and coin two with proba-
bility p2. The same game can be constructed as in 2.1.
For example, given p1 = 0.25 and p2 = 0.75 where we
observe five heads from coin one and none from coin
two, we can ask the number of total flips from both
coins, as well as the number of likely flips from coin
one and coin two.

In the context of this example, the combinatorial
nature of the sample space is apparent. In the case of
a single coin, we were concerned only with the number
of flips. In the case of two coins, we have several ways
that ten flips may have occurred: ten flips of coin one,
nine of coin one and one of coin two, and so on. In
fact, for k coins and n flips, there are

(
n+k−1

k−1

)
ways

this may have been observed [1].
For multiple sensors, we require that the estimation

of remaining targets be the same as in 2.1 when the
probability of detection and total targets detected does
not change (i.e. the resulting overall distribution for
one sensor with p = 0.8 and m = 10 is the same as for
10 sensors, each with pi = 0.8 and mi = 1). This as-
sumption means that the total number of targets needs
to be viewed as a single entity. For example, a mine
field can be viewed not as a collection of individual
mines, but as a single deterrent with a common goal of
blocking transit. This assumption plays an important
role in the derivation of the posterior distribution.

The derivation of the posterior distribution is di-
vided into the calculation of the likelihood function
(Section 2.3) and of the prior distribution (Section 2.4).
The resulting posterior distribution is then given in 2.5.

2.3 The Likelihood Function

The likelihood function is a straightforward general-
ization of the single sensor case. Given the number of
targets detected in each of the T sensors’s sub-areas
m = (m1, . . . ,mT ) and the probabilities of detection
for each sensor p = (p1, . . . , pT ), we determine the like-
lihood function for the total targets in the areas of
n = (n1, . . . , nT ). Each pi is the probability of detect-
ing any given target in the sub-area. Then for each
sub-area, we determine the likelihood of having ob-
served mi targets given that ni targets are actually in
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the sub-area. As the probability depends only on the
sub area, information in each sub-area is independent.
Thus, the likelihood of the data m given n and p is
given by:

P (m
∣∣n,p) =

T∏
i=1

(
ni

mi

)
pmi

i (1− pi)(ni−mi). (8)

2.4 The Prior Distribution

In order to obtain the same result as in 2.1, the same
infinite uniform prior on the total number of targets
n =

∑T
i=1 ni must be assumed. This is not the same

as assuming a uniform prior distribution on the entire
sample space. For example, consider the idea of flip-
ping two fair coins a number of times and observing
only information about the number of heads observed
from each coin. Our prior distribution must be defined
for n = 0, 1, 2, . . ., i.e. for zero total flips, one total flip,
two total flips, etc. From two coins, there is one way
to have no flips, two ways to have one flip, three ways
to have two flips, and n + 1 ways to have n flips. If
all of these outcomes have the same prior weight, more
weight is assigned to three total flips than to two total
flips because there are more ways that more flips could
be realized. For k coins the situation would be even
more noticeable as there are

(
n+k−1

k−1

)
ways of realizing

n flips.
From this discussion it becomes apparent that the

prior distribution must be defined on n = (n1, . . . , nT )
and n =

∑T
i=1 ni must follow a uniform distribution to

ensure the same results as 2.1 in the case where sensor
performance and total targets detected remains con-
stant. The prior distribution is now expressed as the
product of the distribution on total targets and the
distribution of the targets between sub-areas given the
total number of targets. As P (n) does not depend on
n and is therefore part of the constant of normaliza-
tion, we then see that the choice of prior is really a
choice of the distribution of targets among sub-areas
n = (n1, . . . , nT ) for a fixed number of total targets
n =

∑T
i=1 ni. I.e.,

P (n) = P (n)P (n
∣∣n) (9)

∝ P (n
∣∣n). (10)

The first choice of prior on the n = (n1, . . . , nT ) for
a fixed n =

∑T
i=1 ni is the Multinomial Distribution

(2.4.1). The posterior distribution resulting from this
choice is shown to depend on the observed mi only via
their sum M =

∑T
i=1 mi. A hierarchical model is then

considered for P (n
∣∣n) (2.4.3).

2.4.1 Multinomial Distribution

To determine the prior distribution we require a dis-
tribution on the on the n = (n1, . . . , nT ) for a fixed
n =

∑T
i=1 ni. Given x = (x1, . . . , xT ) where each xi

represents an assumed a priori probability that any
given target is in the sub-area of sensor i, a first ap-
proach is to consider a Multinomial(x,n) distribution

with pdf

f(n
∣∣x) =

n!∏T
i=1 ni!

T∏
i=1

xni
i . (11)

In order to understand the implications of this
choice, the resulting posterior distribution on remain-
ing mines must be examined. Equation 3 is applied
to the unknown n for observed data m. Combining
equations 8, 10 and 11 the posterior distribution is:

P (n
∣∣m,p)

∝ P (m
∣∣n)P (n) (12)

∝
T∏

i=1

(
ni

mi

)
pmi

i (1− pi)(ni−mi) ·

· n!∏T
i=1 ni!

T∏
i=1

xni
i (13)

∝ n!
T∏

i=1

[
1

(ni −mi)!
(1− pi)(ni−mi)xni

i

]
, (14)

by cancelling
∏T

i=1 ni! and removing all terms which
are constant with respect to n, i.e depend only on m
and p. In terms of remaining targets r for ri = ni−mi

we have:

P (r
∣∣m,p) ∝ n!

T∏
i=1

[
1
ri!

(1− pi)rixri
i

]
, (15)

since xmi
i is also constant. What is interesting about

the posterior distribution resulting from the multino-
mial prior on n

∣∣n is that the observed mi’s have com-
pletely disappeared in all but the n! = (

∑T
i=1(mi+ri))!

term. This happened because the term
∏T

i=1(mi + ri)!
was cancelled from the numerator of the likelihood
function and the denominator of the prior distribution.
This cancellation of terms left the posterior distribu-
tion dependent on the observed mi’s only by their sum
M =

∑T
i=1 mi. This means that there is no distinction

between the case where we flip two coins and observe
five heads from coin one and zero from coin two, and
the case where we observe zero from coin one and five
from coin two, as well as the case of two from one and
three from the other. In this case, the probabilities xi

are the only term influencing the estimation of remain-
ing targets by type. As the xi are unknown and only
an estimate, we would like to find an approach which
allows the data to influence the final answers. That
is, we would like the prediction of coin flips from coin
one and coin two to depend on the number of observed
heads from coin one and coin two.

In order to do this, a mixture model is proposed.
The concept of a mixture model is first introduced us-
ing the beta-binomial mixture distribution for a two
sensor case in 2.4.2 and this is then developed for the
multiple sensor case using the Dirichlet-Multinomial
mixture model in 2.4.3.

2.4.2 The beta-binomial mixture distribution

A random variable Y is mixture distribution if the dis-
tribution of Y depends on a quantity which also has
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a distribution [3, 6]. Mixture distributions are also
referred to as hierarchical models. An example of a
mixture distribution is the Beta-Binomial distribution
where

Y
∣∣P ∼ Binomial(n, P )

P ∼ Beta(α, β)

and the Beta distribution is defined by:

f(x
∣∣α, β) =

Γ(α + β)
Γ(β)Γ(α)

xα−1(1− x)β−1 (16)

for α > 0, β > 0, 0 ≤ x ≤ 1.
The marginal distribution of Y over the joint dis-

tribution of (Y, P ) can then be computed. Here, the
binomial distribution is being used to allocate the tar-
gets to the sub-areas of sensor one and sensor two.
Total targets are represented by n, y is the number
of targets in the sub-area of sensor one, and p is the
probability that a target is in sub-area one. As p is
unknown, we consider it to be a random variable P
and give P a Beta(α, β) distribution for some chosen
α, β, i.e. the f(x

∣∣α, β) from equation 16 is substituted
for f(p) in equation 19. The marginal distribution of
Y is then:

P (Y = y)
= P (Y = y, 0 ≤ P ≤ 1) (17)

=
∫ 1

0

f(y, p)dp (18)

=
∫ 1

0

f(y
∣∣p)f(p)dp (19)

=
∫ 1

0

[
(

n

y

)
py(1− p)n−y] ·

[
Γ(α + β)
Γ(α)Γ(β)

p(α−1)(1− p)(β−1)]dp (20)

=
(

n

y

)
Γ(α + β)
Γ(α)Γ(β)

·∫ 1

0

p(y+α−1)(1− p)(n−y+β−1)dp (21)

=
(

n

y

)
Γ(α + β)
Γ(α)Γ(β)

Γ(y + α)Γ(n− y + β)
Γ(n + α + β)

, (22)

since the integrand is the kernel of the Beta(y +α, n−
y + β) pdf and therefore the integral must integrate to
the reciprocal of the normalizing constant.

The Beta-Binomial mixture was shown using pa-
rameters more familiar to the Binomial, n,m and p,
and Beta, α and β, distributions. Putting this back
into the notation of multiple sensors with an index i,
for the prior distribution on P (n1, n2

∣∣n) we substitute
n1 = y and n2 = n − y the beta-binomial mixture
above, i.e. n1, n2

∣∣n ∼ Beta(n1 +α, n2 +β) . Although
the two parameters α and β must still be chosen (as
the xi in 2.4.1), they provide much more flexibility
than the xi. For example, α = β = 1 simplifies to

1
n+1 . This means that for a fixed n the prior distribu-
tion is uniform on the sample space as for each n we
have n+1 combinations and each combination is given

equal weight. For α = β = 1, there is no assumption
about the relative densities for the two sensors. The
data determine the posterior distribution. If there is
good prior information to determine the relative den-
sities for the sub-areas, α and β can be chosen so that
they will have more of an impact on the final answers.
Large α, β will have a larger impact on the final an-
swers and smaller values will have less influence on the
final answers.

2.4.3 A Dirichlet-Multinomial Mixture

The same idea can be applied to a Dirichlet-
Multinomial mixture for T sensors. We start with the
Multinomial distribution described in 2.4.1. Then, we
consider the xi’s not as fixed parameters, but as ran-
dom variables. The Dirichlet(α1, . . . , αT ) distribu-
tion for X = (X1, . . . , XT ) is defined as:

f(x
∣∣α) =

Γ(
∑T

i=1 αi)∏T
i=1 Γ(αi)

T∏
i=1

xαi−1
i , (23)

for αi > 0, 0 < xi < 1 and
∑T

i=1 xi = 1 (see [5, 7]).
Using this in the same way as the Beta Distribution

was used with the Binomial Distribution, the Dirichlet-
Multinomial hierarchical model is of the form:

N1, N2, . . . , NT

∣∣X1, X2, . . . , XT ∼
Multinomial(n1, . . . , nT , x1, . . . , xT )

X1, X2, . . . , XT ∼
Dirichlet(α1, . . . , αT ).

As in 2.4.2, we compute the marginal distribution of
(N1, . . . , NT ) by conditioning on (X1, . . . , XT ):

P (n
∣∣n)

=
∫ 1

x1=0

· · ·
∫ 1−

∑T−2
i=1 xi

xT−1=0

f(n,x)dx1 · · · dxT−1 (24)

=
∫ 1

x1=0

· · ·
∫ 1−

∑T−2
i=1 xi

xT−1=0

f(n
∣∣x)f(x)dx1 · · · dxT−1(25)

=
∫ 1

x1=0

· · ·
∫ 1−

∑T−2
i=1 xi

xT−1=0

n!
n1! · · ·nT !

xn1
1 · · ·xnT

T

Γ(
∑T

i=1 αi)∏T
i=1 Γ(αi)

T∏
i=1

xαi−1
i dx1 · · · dxT−1 (26)

=
n!

n1! · · ·nT !
Γ(
∑T

i=1 αi)∏T
i=1 Γ(αi)∫ 1

x1=0

· · ·
∫ 1−

∑T−2
i=1 xi

xT−1=0

xni+αi−1
i dx1 · · · dxT−1(27)

=
n!

n1! · · ·nT !
Γ(
∑T

i=1 αi)∏T
i=1 Γ(αi)

∏T
i=1 Γ(ni + αi)

Γ(
∑T

i=1(ni + αi))
(28)

again using the fact that
∏T

i=1 xni+αi−1
i the kernel of

a Dirichlet(α1 + n1, . . . , αT + nT ) pdf, and therefore
the integral must be equal to the reciprocal of the nor-
malization constant. Note that n =

∑T
i=1 ni has also

been used to simplify the notation.
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As were α and β in the Beta-Binomial mixture, the
the αi are fixed parameters. Choosing all αi = 1 has
the same effect of giving uniform weight to all the com-
binations of the ni for a fixed n. Large αi will have
more impact on the posterior distribution than small
values of αi.

2.5 The Posterior Distribution

Combining equations 8 and 28 using 3, the posterior
distribution on n1,1, . . . , nT given the mi,pi is then de-
fined by:

P (n
∣∣m,p)

∝ P (m
∣∣n)P (n) (29)

∝
T∏

i=1

(
ni

mi

)
pmi

i (1− pi)(ni−mi) ·

· n!∏T
i=1 ni!

Γ(
∑T

i=1 αi)∏T
i=1 Γ(αi)

·
∏T

i=1 Γ(ni + αi)

Γ(n +
∑T

i=1 αi)
.(30)

As with the single sensor case we consider the poste-
rior distribution on the targets remaining ri = ni−mi

for i = 1, . . . , T :

P (r
∣∣m,p)

∝
T∏

i=1

Γ(ri +m i + 1)
Γ(mi + 1)Γ(ri + 1)

pmi
i (1− pi)ri ·

·
Γ((
∑T

i=1 ri + mi) + 1)∏T
i=1 Γ(ri + mi + 1)

Γ(
∑T

i=1 αi)∏T
i=1 Γ(αi)

·∏T
i=1 Γ(mi + ri + αi)

Γ(
∑T

i=1 ri + mi +
∑T

i=1 αi)
, (31)

using the fact that x! = Γ(x + 1).
Cancelling terms and removing constant terms with

respect to r,

P (r
∣∣m,p)

∝
Γ(1 + M +

∑T
i=1 ri)

Γ(Λ + M +
∑T

i=1 ri)
·

T∏
i=1

(
qi

ri
Γ(mi + ri + αi)

Γ(ri + 1)

)
(32)

where Λ =
∑T

i=1 αi, M =
∑T

i=1 mi, and qi = 1−pi. As
the individual mi’s are still part of the resulting poste-
rior, rather than just the M as in 15, the distribution
on targets remaining in the overall area and sub-areas
will depend on the observed mi. This means that five
heads resulting from coin one and zero from coin two
will give a different prediction on total flips from coin
one than would zero heads from coin one and five from
coin two, even if the overall distribution of total flips
would be the same for fair coins.

3 Expectation Calculations

The goal of the derivation above is to calculate vari-
ous measures of effectiveness which can be represented
as expected values with respect to distribution 32. Of
particular interest are the two measures of effective-
ness:

• The expected number of remaining targets,

and

• The threat, or probability of damage, to traffic
transiting the area.

The first quantity can be expressed, using the lin-
earity of the expectation operator, by

E

(
T∑

i=1

ri

)
=

T∑
i=1

E (ri) . (33)

For the second quantity, define a to be the prob-
ability that a transiting vessel will not be damaged
by a single target. Then the probability of not being
damaged by r targets is ar. Thus, in a single area
the probability of safe transit is 1 − ar. Assuming a
transiting vessel must pass each of T areas safely given
probability of safe transit ai for a single target in each
sub-area and ri targets in each sub-area, the threat
given r = (r1, . . . , rT ) remaining targets is

∏T
i=1 ai

ri .
Defining D to be the event that a ship transiting the
minefield is damaged by any target,

P (D
∣∣R = r) = 1−

T∏
i=1

ari
i (34)

The expected value of this probability over R =
(R1, . . . , RT ) is then:

P (D) =
∞∑

r1=0

· · ·
∞∑

rT =0

P (D
∣∣R = r)P (R = r)(35)

=
∞∑

r1=0

· · ·
∞∑

rT =0

P (D
∣∣r)P (r

∣∣m,p) (36)

= E(P (D
∣∣R = r)) (37)

= E(1−
T∏

i=1

ari
i ) (38)

= 1− E(
T∏

i=1

ari
i ). (39)

In both cases, the desired measure of effectiveness
can be represented in terms of the expected values,
with respect to distribution 32, of separable functions.

4 Implementation of Expecta-
tion Calculations

In order to simplify the presentation, define

K(r) =
Γ
(
1 + M +

∑T
i=1 ri

)
Γ
(
Λ + M +

∑T
i=1 ri

)
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and

hi (r) = qi
r Γ(r + mi + αi)

Γ(r + 1)
.

Assume, here and below, that the function g : NT → R
is separable and can be written in the form

g (r) = g1 (r1) g2 (r2) · · · gT (rT ) (40)

Finally, define

SN (g) =
N∑

r1=0

· · ·
N∑

rT =0

K(r)
T∏

i=1

hi(ri)gi(ri) (41)

=
N∑

r1=0

h1(r1)g1(r1) · · ·

N∑
rT =0

hT (rT )gT (rT ) ·K(r) (42)

and

S (g) = lim
N→∞

SN (g) . (43)

By direct comparison of equation 32 and 41 we see
that the normalization constant for distribution 32 is
S(1), and that the expected value of separable function
g with respect to distribution 32 is given by E(g) =
S(g)/S(1).

Since a closed form expression for S(g) is unlikely to
exist, we assume that N has been chosen large enough
so that SN (g) is a sufficient close to S(g) and discuss
the calculation of SN (g). From 41 we see that the
obvious method of computing SN (g) has complexity
O
(
NT
)

which severely limits the applicability of distri-
bution 41. However, this limitation can be overcome.

The difficulty in calculating SN (g) is caused by in-
separability of the kernel function K. However, K still
has a particularly nice structure. Specifically, if we
define

k (x) =
Γ (1 + M + x)
Γ (Λ + M + x)

(44)

with x ∈ {0, 1, . . . , NT}, then

K (r) = k

(
T∑

i=1

ri

)
. (45)

Representing k by its discrete Fourier expansion, we
obtain

k (x) =
NT∑
j=0

cjb
x
j (46)

where

bj =
exp (2πj i)√

NT + 1
(47)

cj =
NT∑
n=0

k(n) b
n

j . (48)

Using this expansion to represent K, we have

K (r) = k

(
T∑

i=1

ri

)
(49)

=
NT∑
j=0

cjb
(r1+r2+···+rT )
j (50)

=
NT∑
j=0

(
cj

T∏
k=1

brk
j

)
. (51)

Thus, while K is inseparable, it is “nearly separa-
ble” in the sense that it can be represented as a finite
sum of separable functions.

Inserting 51 into the equation 42 we get, after some
simplification,

SN (g) =
NT∑
j=0

cj

N∑
r1=0

br1
j h1 (r1) g1 (r1)

· · ·
N∑

rT =0

brT
j hT (rT ) gT (rT ) (52)

=
NT∑
j=0

cj

(
T∏

k=1

(
N∑

rk=0

brk
j gk (rk) hk (rk)

))
.

The computational complexity of calculating SN (g)
using expression 52 is O

(
N2T 2

)
. This provides re-

markable speed-up in computation time and greatly
increases the applicability of distribution 32.

5 Summary

This paper presents a method of estimating the number
of targets remaining in an area, and the threat to tran-
siting traffic, after an attempt has been made to detect
an overall, unknown number of targets. The method
is based on expectation calculations with respect to
a distribution which was derived using a Dirichlet-
Multinomial prior distribution and assumptions about
the effectiveness of the original search attempt. The re-
sulting calculations, in their canonical form, are com-
putationally prohibitive. An alternative form of the
calculations is presented which provides a mechanism
for calculating the expectations in a negligible amount
of time.
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