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Multipath pulse shapes in shallow water: Theory and simulation
Chris H. Harrisona� and Peter L. Nielsenb�
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In shallow water propagation the steeper ray angles are weakened most by boundary losses.
Regarding the sound intensity as a continuous function of angle it can be converted into a function
of travel time to reveal the multipath pulse shape received from a remote source �one-way path� or
a target �two-way path�. The closed-form isovelocity pulse shape is extended here to the case of
upward or downward refraction. The envelope of the earliest arrivals is roughly trapezoidal with a
delayed peak corresponding to the slowest, near horizontal refracted paths. The tail of the pulse falls
off exponentially �linearly in decibels� with a decay constant that depends only on the bottom
reflection properties and water depth, irrespective of travel time, a useful property for geoacoustic
inversion and for sonar design. The nontrivial analytical problem of inverting explicit functions of
angle into explicit functions of time is solved by numerical interpolation. Thus exact solutions can
be calculated numerically. Explicit closed-form approximations are given for one-way paths.
Two-way paths are calculated by numerical convolution. Using the wave model C-SNAP in several
broadband cases of interest it is demonstrated that these solutions correspond roughly to a depth
average of multipath arrivals. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2434691�

PACS number�s�: 43.30.Gv, 43.30.Pc �RCG� Pages: 1362–1373

I. INTRODUCTION

The multipaths of shallow water propagation spoil the
resolution of active sonars by introducing a spread in travel
times. The broadening of pulse transmission is therefore a
nuisance to sonar detection and underwater communications
�Urick, 1967; Atkinson, 1974; Sachs et al., 1968�. On the
other hand it has been shown �Smith, 1971; Harrison, 2003a�
that the pulse shape contains easily extractable environmen-
tal information. So for both reasons the shape of the pulse
and its dependence on environmental properties are of inter-
est. One could investigate these effects with ray traces, but
here the more general behavior is established by studying the
pulse shape analytically.

In a multipath shallow water environment acoustic travel
times and boundary losses vary according to the trajectories
of the rays. In the absence of additional constraints, such as
source or receiver beam patterns, or target vertical direction-
ality this results in a calculable spreading of the transmitted
pulse shape. If the sonar system has a broad frequency band
then individual eigenray arrivals may be seen inside this
spread. If it has a narrow band then interference effects make
the rays group into modal arrivals. In both cases the arrivals
tend to increase their separation as time advances. The math-
ematical approach here is insensitive to these detailed arriv-
als because it treats the ray angles as a continuum. Neverthe-
less it takes account of both their changing amplitudes and
their changing separations in such a way that the cumulative
time integral of the pulse shape matches the more “steppy”
cumulative integral of the true eigenray or mode arrival pulse
shape. The pulse envelope calculated here corresponds
physically to a depth average or locally range-averaged pulse

shape. The depth average is particularly close for the tail of
the pulse where rays interact with both seabed and sea sur-
face.

Smith �1971� and Harrison �2003a� investigated this be-
havior for isovelocity water and found that for a two-way
path the received pulse decayed exponentially �i.e., the roll-
off was a fixed number of decibels per unit time� with a time
constant that was independent of travel time or range but
fixed by the angle dependence of the reflection loss. Subse-
quently Prior and Harrison �2004� applied the findings to
experimental data, and demonstrated that the derived reflec-
tion properties were consistent with the literature.

This paper extends the earlier analytical work on pulse
shape first by including the critical angle’s truncation of the
pulse �trivial for one-way path but not trivial for two-way
path�, and second by including a uniform vertical gradient
refraction using the approach of Harrison �2003b�. In both
cases one-way and two-way paths are considered. The
former would be appropriate for direct blast measurements
while the latter would be appropriate for the multipath echo
from a point target or an echo repeater. In this respect the
approach contrasts with other active sonar inversion tech-
niques based, for instance, on matched field processing of the
one-way path �Siderius et al., 2002�, or inversion of rever-
beration �Preston et al., 2005�. This time spreading is still
expected even if the target has a large horizontal extent
which may lead to a “glint” near the horizontal specular di-
rection. However, no such effect will be found if the target
has a large vertical extent like, for example, the leg of an oil
rig.

Finally some comparisons in three environments with
the normal mode model C-SNAP demonstrate the relation-
ship between the closed-form pulse shapes and the sequence
of resolvable eigenray arrivals.
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II. EIGENRAYS

The approach in Harrison �2003a� was to calculate
propagation intensity analytically as an eigenray sum in
which there are so many eigenrays that their index can be
treated as a continuum in angle. The intensity can be treated
equivalently as a continuum of incoherent modes or as en-
ergy flux. The solution behaves like a local range average,
retaining depth variation but eliminating rapid interference
fluctuations and convergence effects. The technique has been
applied to bistatic geometry �Harrison, 2005a�, a refracting
environment with flat seabed �Harrison, 2003b�, and a re-
fracting environment with sloping seabed �Harrison, 2005b�.
The power arriving at a remote receiver can be written as an
integral over eigenray index, which can be converted, by
change of variable, to an integral over angle �at the source or
receiver�. In the context of time smearing, for each eigenray
the travel time and the angle are known, so the power can
also be written as an integral in travel time. Since travel time
can be resolved, the multipath pulse shape is the integrand in
this time integral. So to find these functions in a refracting
environment one can use the formulas already derived for
propagation in terms of ray elevation angle � or inverse cycle
distance u in Harrison �2003b�. A minor difficulty is in writ-
ing the result in terms of time t so that the pulse shape is an
explicit function of time.

Generally, knowing a propagation formula as the inte-
gral of a quantity Q��� over a parameter �, and knowing the
conversion from � to t one obtains a pulse shape I1way,

I1waydt = �Q���t���d��t�
dt

��dt �1�

The modulus sign is required for the case where t is not a
single-valued function of �, for instance � could be angle.
Integrating I1way in t would, of course, give the same result
as integrating Q��� in �. Both can be interpreted as either
the linear form of transmission loss �10−TL/10� or the en-
ergy per unit area resulting from a unit energy source.
Thus I1way would be an intensity. The isovelocity case will
be recapitulated in Sec. III. The pulse shape for the two-
way path is given by the convolution of the one-way pulse
shape I1way with itself,

I2waydT = 	
0

T

I1way�t�I1way�T − t�dtdT . �2�

The function I1way may be discontinuous or split into sev-
eral regions in each of which there is one continuous func-
tion. For a one-way path this is straightforward, but for
the two-way path the convolution will contain several
cross-term contributions with various integration limits.

III. REVIEW OF PULSE SHAPE WITH ISOVELOCITY
WATER

A. One-way path

Following Harrison �2003a� the total time for a ray,
tilted at �, to travel a horizontal distance r at speed c is given
by

t = �r/c�sec � 
 �r/c� + �r/2c��2. �3�

In terms of the delay after first arrival � this is

� = t − r/c = r�2/2c , �4�

d� = �r/c��d� . �5�

The received energy for a unit energy source is

E =
2

rH
	

0

�c

exp�−
��2r

2H
�d� , �6�

where H, �, �c are water depth, horizontal angle, and critical
angle, and �� is a linear approximation to log�R�, i.e., bot-
tom reflection loss in dB is RL=20 log10�R�=�dB�, where
�=�dB/ �10 log10 e�. This converts to a one-way pulse
shape

I1wayd� =
2

rH

exp�− ��/tH�

2t0�

d� , �7�

where t0�r /c is the delay time to the first arrival and tH

=H /c.
To the earlier derivation is added the condition that this

equation is valid for 0����c where �c corresponds to the
critical angle �c. Elsewhere I1way=0. The behavior of this
function is shown in Fig. 1. In this example r=10 km, �dB

=1 dB, �c=20°, H=100 m. Units will be discussed in detail
in Sec. VI. For now note that the mathematical quantity I1way

in Eq. �7� has explicit dimensions of per unit area per unit
time. Thus the y axis is labeled dB re m−2 s−1. Notice that in
the angle or travel time continuum case the first arrival is a
singularity. This is because in the continuum the interval
between eigenray arrivals goes to zero at this point. In real-
ity, of course, eigenrays are discrete so the interval between
first and second arrival is finite. Nevertheless the total energy
in the pulse �integral d�� is finite since it has just been trans-
formed from the, more obviously finite, integral in �.

FIG. 1. One-way pulse shape in isovelocity water.
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B. Two-way path

The derivation in Harrison �2003a� for a two-way path T
is correct in the absence of a critical angle, and is in any case
correct for T��c. Otherwise the critical angle’s truncation of
the one-way pulse introduces a second functional form be-
tween delays �c and 2�c, beyond which I2way is zero. The
integral has the same form as Eq. �53� in Harrison �2003a�
but with different limits. Thus for 0�T��c it is

I2waydT =
2

r2H2t0
	

0

T 1

�1�T − �1�

d�1 exp�− �T/tH�dT

=
2

r2H2t0
	

��=−T/2

��=T/2 1

�T/2�2 − ��2

d��

� exp�− �T/tH�dT

=
2

r2H2t0
�asin�2��/T��−T/2

T/2 exp�− �T/tH�dT

=
2	

r2H2t0
exp�− �T/tH�dT . �8�

For �c�T�2�c it is

I2waydT =
2

r2H2t0
	

��=−��c−T/2�

��=�c−T/2 1

�T/2�2 − ��2

d��

� exp�− �T/tH�dT

=
4

r2H2t0
asin��2�c/T� − 1�exp�− �T/tH�dT . �9�

The behavior of the complete function is shown in Fig.
2. Parameters are the same as in Fig. 1. There is no singu-
larity as was seen with the one-way path, and the angle dis-
continuity separating the two functions is clearly visible in
the middle. Note that this quantity is the time domain repre-
sentation of two-way propagation loss with one grand smear-
ing. Its units are therefore per unit area-squared per unit time.

IV. PULSE SHAPE WITH REFRACTION

To calculate dv /dt in Eq. �1� one needs formulas for
travel time and cycle distance. In an environment with a
uniform sound speed gradient c� between upper and lower
sound speed values cH, cL �cH may be physically at the top or
the bottom of the water column� the cycle distance for a ray
with a turning point velocity cT is

d0 =
2

�c��
��
cT

2 − cL
2 − 
cT

2 − cH
2 �� �10�

and the cycle travel time can be expressed in three ways:

�0 =
1

�c��
��ln�1 + sin �L

1 − sin �L
� − ln�1 + sin �H

1 − sin �H
���

=
2

�c��
��atanh�sin �L� − atanh�sin �H���

=
2

�c��
��asinh�tan �L� − asinh�tan �H��� . �11�

Throughout this paper subscripts L and H are attached to
various properties to denote their values at the boundary cor-
responding to low sound speeds �L� or high sound speeds
�H�. The total one-way travel time can be written in terms of
the horizontal cycle distance and the cycle travel time

t =
r�0

d0
. �12�

This can easily be generalized to a piece-wise linear depth
dependence �Harrison, 2006�, and this method will be used
in the last test case of Sec. VI.

Harrison �2003b� gives explicit formulas for propagation
intensity with a flat seabed and uniform sound speed gradi-
ent. At very high frequencies one expects to find the effects
of caustics, manifest in the depth dependence, but at lower
frequencies they are expected to be less important. Propaga-
tion and reverberation intensities are calculated with, and
without, caustic effects; in the main derivations here caustics
are ignored although they are reconsidered in the context of
the test cases in Sec. VI. Justification for this at frequencies
of a few kilohertz or below is given in Appendix A of Har-
rison �2005b�.

Note that the exact formulas from Harrison �2003b� for
tan �L and tan �H are consistent with the exact formula for
cycle distance �Eq. �10�� and cycle travel time �Eq. �11��.
Although, in the isovelocity case, a small angle approxima-
tion was introduced, all efforts are made, in the refraction
case, to avoid approximations in calculating times �as op-
posed to intensities� until absolutely necessary because of the
more complicated behavior.

There are two refraction regimes: In the first, rays have
one refraction turning point and interact with only one
boundary �the low speed side�; in the second, rays interact
with both boundaries.

FIG. 2. Two-way pulse shape in isovelocity water. The early part is expo-
nential �linear in dB�.
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A. One-way path: Single boundary interaction

Following Sec. 2.2.1 of Harrison �2003b� when rays in-
teract with only one boundary the cycle distance d0 and its
reciprocal u are given exactly by

d0 = u−1 = �2cL/c��tan �L. �13�

To avoid making ad hoc approximations at this stage, the
mathematically convenient relationship R=� tan � for each
reflection is assumed at the outset. Therefore the total
boundary loss at a fixed range r is independent of angle �and
therefore time�

�L tan �Lru = �L tan �Lrc�/�2cLtan �L� = �Lrc�/�2cL� .

�14�

The original equation �Eq. �2.6�, Harrison, 2003b� was writ-
ten as an integral in the parameter u. From Eq. �12� the total
travel time t can also be written in terms of u,

t =
r�0

d0
= ur�0 =

2ru

c�
asinh�tan �L� =

r asinh�tan �L�
cLtan �L

=
2ru

c�
asinh� c�

2cLu
� . �15�

Since the exact maximum and minimum values of u are,
respectively,

umax = 
c�/�4hsr�csr + cL�� , �16�

umin = 
c�/�4H�cH + cL�� , �17�

where H, cL, cH are water depth and sound speeds at the
boundaries �high and low�. The gradient is c�= �cH−cL� /H.
The greater of the sound speeds at the source and receiver is
csr, and the corresponding distance of this point from the low
speed boundary is hsr. Thus hsr is a depth in an upward re-
fracting environment but a height from the seabed in a down-
ward refracting environment.

The corresponding exact minimum and maximum val-
ues of tan �L are

tan �Lmin = 
�csr/cL�2 − 1, �18�

tan �Lmax = 
�cH/cL�2 − 1. �19�

Substitution into Eq. �15� gives exact maximum and mini-
mum travel times,

tmax = r asinh�
�csr /cL�2 − 1 �/
�csr
2 − cL

2� , �20�

tmin = r asinh�
�cH/cL�2 − 1 �/
�cH
2 − cL

2� . �21�

A straightforward numerical approach to evaluating Eq.
�1� is first to differentiate Eq. �15� with respect to u to obtain
du /dt as a function of u,

du

dt
= u/�t − �r/cL�sech�tc�/�2ru��� , �22�

then the function t�u� �in Eq. �15�� can be inverted to u�t� by
simply interpolating it on to a linear grid of t.

Following Eq. �1� and adopting Eq. �22� leads to a for-
mula for the single boundary interaction part �regime 1� of
the pulse shape

I1dt =
4

r
exp�− RLru�

du

dt
dt

=
4

r
u/�t − �r/cL�sech�tc�/�2ru���dt exp�− �Lc�r/2cL�

�23�

whose functional form in t can be seen by interpolation using
Eq. �15�.

In most of this paper it is assumed that bottom loss is
linear with tangent of angle, however, the interpolation ap-
proach allows one to drop this assumption and take an arbi-
trary curve, as implied by the first line of Eq. �23� �RL is the
natural logarithm of the power reflection coefficient of the L
boundary, i.e., on the low sound speed side�. This will be
useful in later comparisons with a wave model. An example
with parameters cL=1500 m/s, cH=1520 m/s, r=10 km,
�LdB=1 dB, �HdB=0 dB, H=100 m, zsr=90 m is shown in
Fig. 3 �zsr is the complement of hsr, i.e., zsr=H−hsr�. The
vertical dotted lines denote tmin and tmax.

To find an explicit functional form in t one needs to
make an approximation. There are various approaches which
are elaborated in Appendix A. The resulting approximate
contribution to the pulse shape can be written as an explicit
function of t �and tL=r /cL�,

I1dt =
dt

�tL − t�3/2� tL
3/2c�

6r2

exp�− ��Lc�/2cL�r�� . �24�

The factor in curly braces does not affect the pulse shape of
this contribution but it does control the amplitude relative to
the two-boundary contribution. It is clear from the form of
Eq. �24� that a singularity is possible when t= tL. Usually this
is precluded by the fact that tmax� tL, however, if both the
source and receiver are on the “L” boundary then tmax= tL

�see Eq. �20��. One could superimpose a plot of Eq. �24�

FIG. 3. Contribution to the pulse for refraction regime 1, bounded by the
times tmin and tmax. Parameters are cL=1500 m/s, cH=1520 m/s, r=10 km,
�LdB=1 dB, �HdB=0 dB, H=100 m, and zsr=90 m.
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on the exact curve in Fig. 3 �i.e., Eq. �23��, however visual
discrimination would be difficult since the mean differ-
ence is 0.1% in this case. This figure becomes 0.5% with
zsr=10 m, and reduces with sound speed contrast.

B. One-way path: Two-boundary interaction

Following Sec. 2.2.2 of Harrison �2003b� the total
boundary loss is ��L tan �L+�H tan �H�ru, and the relation-
ship between angles at the low and high speed boundaries �L,
�H and cycle distance d0 and its reciprocal u are given ex-
actly by

tan �L = 2HuaL + c�/�4cLu�, aL = 1 + Hc�/2cL, �25�

tan �H = 2HuaH − c�/�4cHu�, aH = 1 − Hc�/2cH, �26�

t =
2ru

c�
�asinh�2HuaL + c�/�4cLu��

− asinh�2HuaH − c�/�4cHu��� . �27�

The limits on u, �, and t are as follows taking �c to be the
smaller critical angle of the two boundaries. Strictly the up-
per limit on u is given by Eq. �25� with �L=�c, but it is
approximately

umax 
 tan �c/2H , �28�

umin = 
c�/�4H�cH + cL�� . �29�

Note that this second limit is the same as for regime 1 and
that insertion into Eq. �27� leads to the same formula for t
since the second term vanishes. The corresponding exact
minimum and maximum values of tan �L are

tan �Lmax = tan �c, �30�

tan �Lmin = 
�cH/cL�2 − 1. �31�

Substitution into Eq. �15� gives exact maximum and
minimum travel times

tmax = �r/cL�asinh�tan �c�/tan �c, �32�

tmin = r asinh�
�cH/cL�2 − 1�/
�cH
2 − cL

2� . �33�

Again, a numerical solution is straightforward. Differentiat-
ing Eq. �27� with respect to u leads, after some manipulation,
to

du

dt
= u��t −

2r


�2Hu�cH + cL��2 + �c�/2u�2 + 2�cL
2 + cH

2 �� .

�34�

From Eq. �2.17� Harrison �2003b� the pulse shape for the
two-boundary-interacting component is

I2dt =
4

r
exp�− �RL + RH�ru�

du

dt
dt

=
4

r
exp�− ��L tan �L + �H tan �H�ru�

du

dt
dt

= exp�− 2rHu2��LaL + �HaH��
du

dt
dt

� �4

r
exp�− c�r��L/cL − �H/cH�/4�� �35�

with aL and aH given by Eqs. �25� and �26�. By using Eq.
�27� to interpolate to t and Eq. �34� for du /dt the exact result
is plotted in Fig. 4 with the same parameters as for regime 1
in Fig. 3. It is already clear that this solution must be close to
that for the isovelocity case �Eq. �7�� for large �. The first
line of Eq. �35� is a reminder that the interpolation approach
allows one to adopt arbitrary boundary loss RL, RH and to
drop the assumption of linearity.

To find a pulse shape that is an explicit function of t one
needs to make an approximation to Eqs. �27� and �28�, but
there are many choices, and there are two aims. First one
seeks a compromise between accuracy and simplicity, and
second, one seeks a solution that is simple enough in form to
convolve with itself and with the regime 1 contribution �Eq.
�24�� in order to derive a two-way pulse shape. The former
succeeds but unfortunately the latter does not. Two contend-
ers are derived in Appendix A using, respectively, Eq. �A16�
and Eq. �A17� but both using Eq. �A14�, and these are com-
pared with the exact solution in Fig. 4. As functions of t
these two approximations are, respectively,

I2dt = � t

b1t + b0

−
1


c2t2 + c1t + c0
�−1

� exp�− a1t − a0�dt2Hf0, �36�

FIG. 4. Contribution to the pulse for refraction regime 2: “Exact” �solid
black line�; “Approx.1” �Eq. �36�� �thick grey line, partially obscured�; “Ap-
prox.2” �Eq. �37�� �black dashed line�. Parameters are cL=1500 m/s, cH

=1520 m/s, r=10 km, �LdB=1 dB, �HdB=0 dB, H=100 m, and zsr=90 m.
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I2dt =
t


t2 − t0
2

exp�− a1t − a0�
1

t0
dtf0, �37�

where the constants a0, a1, b0, b1, c0, c1, c2, f0, t0 are given
in Appendix A.

Note that the decay rate a1 reduces to ��LaL+�HaH� / tH

through Eq. �A13� if tH is redefined as travel time across the
water depth with an average sound speed. It is therefore still
independent of travel time or range as in the isovelocity case.
Comparing these formulas with the isovelocity case, Eq. �7�,
one finds that both equations converge on it as cL→cH.

C. Two-way path: Numerical convolution

The pulse shapes for the two regimes overlap in time
�see Figs. 3 and 4�, but since the rays are considered to be
incoherent their powers can be added to obtain an overall
pulse shape as shown in Fig. 5. The characteristic trapezoidal
or sail shape consists of a rise from first arrival at t= tmin with
a later peak at t= tmax �rarely a singularity�, followed by a
sudden drop to an exponential decay which continues until
t= tc at the critical angle. Thus between tmin and tmax the pulse
shape is one explicit, continuous function, and between tmax

and tc it is another. From the point of view of convolving the
pulse by itself as in Eq. �2� there are three integrals to be
formed, each with various limits. Here it has been tacitly
assumed that the two-way paths go from source to receiver
and back to source location. Clearly many permutations are
possible if the source and receiver are separated. The calcu-
lation then consists of the convolution of the two different
one-way pulse shapes. So far, the search for approximations
to these functions that can be integrated analytically has been
unsuccessful, so a simpler approach is numerical convolu-
tion. Three examples of pulse shapes for two-way paths are
shown in Fig. 6 for the same parameters as in Fig. 5 but with
zsr=90, 50, and 10 m. The dashed lines show the isovelocity
equivalent based on the average sound speed for comparison.
More examples are given in Harrison �2006�.

V. RULES OF THUMB

It is possible to describe the one-way trapezoid shape
roughly through two parameters. These are the time spread

FIG. 5. Contributions to the pulse shape from refraction regime 1 �dash-dot
line�, regime 2 �dashed line�, and their sum during the period in which they
overlap �solid line�. Parameters are as in Figs. 3 and 4.

FIG. 6. Two-way pulse shape �solid� for parameters as in Fig. 5 except that
zsr �depth of the shallowest of source and receiver� takes values: �a� 90 m,
�b� 50 m, and �c� 10 m. Isovelocity equivalent for average sound speed
superimposed �dashed line�.
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of the regime 1 contribution, T0 �i.e., the time difference
between the first arrival and the peak T0= tmax− tmin�, and the
ratio of intensities at these two times F0. The right-hand
sides of Eqs. �20� and �21� are both of the form r /cL

�asinh�X� /X, so their difference can be written in terms of
the series expansion as

asinh�X�
X

−
asinh�Y�

Y
= −

X2 − Y2

3!
+ ¯ . �38�

So the time difference can be written in terms of the
range, sound speed gradient, and zsr�zsr=H−hsr�, or in terms
of sound speed contrast 
csr=cH−csr and travel time tL

=r /cL as

T0 = tmax − tmin =
r

6cL
3 �cH

2 − csr
2 � �

rzsrc�

3cL
2 �

1

3
tL


csr

cL
. �39�

As one might expect, putting either source or receiver near
the high speed boundary �small zsr� or weakening the sound
speed gradient results in a smaller angle range for regime
1 and therefore a shorter time spread.

According to Eq. �24� the ratio of intensities at these two
times is

F0 = � tL − tmin

tL − tmax
�3/2

. �40�

Again invoking Eqs. �20� and �21� and expanding their series
to first order one finds

F0 = � cH
2 − cL

2

csr
2 − cL

2�3/2

= � H�cH + cL�
�H − zsr��csr + cL��

3/2

� � H

�H − zsr�
�3/2

= � H

hsr
�3/2

. �41�

To a good approximation the intensity ratio just depends
on the proximity of the �closest of� source and receiver to the
high speed boundary. In summary it is possible to control the
pulse shape to a certain extent: The sail shape is most pro-
nounced if both source and receiver are close to the low
speed boundary; it is least pronounced and the pulse re-
sembles the isovelocity case when one or both are near the
high speed boundary. The tail of the pulse, with or without
refraction, has an exponential decay that depends on reflec-
tion loss and water depth only. The shape of the tail is there-
fore independent of range.

As mentioned at the beginning of Sec. IV C it has been
assumed that two-way paths are from source to receiver and
back to the same source location. Of course, in reality there
are multipaths between source and target and then between
target and receiver, all of which may be at different depths.
The above-mentioned rules of thumb are for one-way paths,
and one can still combine their results assuming different end
point depths on the outward and return paths.

VI. COMPARISON WITH A WAVE MODEL

Section I alluded to the fact that the approach used here
is based on a continuum of rays or modes whereas in reality
one may be able to discriminate actual rays with a broad
band system or actual modal arrivals with a narrow band
system. To make this comparison more concrete and to check
the results the wave model C-SNAP �Ferla et al., 1993� is
run and averages devised to demonstrate the agreement ex-
plicitly. In the following, three test cases are considered: is-
ovelocity, uniform downward refraction, and a three layer
summer profile with a thermocline.

For the given range and source and receiver depths
C-SNAP calculates a normal mode solution at 2000 frequen-
cies between 500 and 1500 Hz. This is then shaded and Fou-
rier transformed to form a received time series. To ensure
correspondence with the analytical solutions the time series
is normalized by also forming a source time series and cal-
culating its integral of pressure squared over time. Thus there
is effectively a unit energy source resulting in a received
intensity, and the units of the response are intensity per unit
source energy or m−2 s−1, as already noted for the closed-
form solutions �see also Hall, 1995; Ainslie and Beerens,
2005�.

A further step needs to be taken because the time series
resolves eigenrays, given a wide frequency band �or resolves
modal arrivals for a narrow band�. In principle these can be
smoothed out with an average in travel time or range or
depth. It is inevitable that in the tail of the smoothed pulse,
where rays interact with both boundaries, the eigenray delays
vary uniformly and continuously with depth so a depth av-
erage is appropriate. In the early part of the pulse for the
refraction cases the analytical solution is also a function of
depth so one can also compare the depth average of the ana-

FIG. 7. Sound speed profiles for test cases: Case 1, isovelocity �dash-dot
line�, case 2, uniform gradient �dashed line�, and case 3, “summer” �solid
line�.
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lytical solution with the depth average of the normal mode
solution. The formulas in the main text ignore focusing and
caustic effects, however, following Weston �1980� it is
straightforward to include them, as well as depth averaging,
as explained in Appendix B.

All cases assume a water depth of 100 m, a source depth
of 50 m, and a range of 50 km. Sound speed profiles are
shown in Fig. 7, and the seabed is assumed to be a half-
space, although this is not a restriction, with parameters
given in Table I. The relevant part of the Rayleigh reflection
coefficient is shown in Fig. 8. Notice that the linear approxi-
mation to reflection loss is very good up to about 16° �the
critical angle is 18.3°, � is 0.32 rad−1, and �dB

=1.39 dB/rad�. At worst it overestimates the loss by about
0.04 dB near 12°.

A. Isovelocity case

Figure 9 shows the closed-form solutions superimposed
on the depth average of the C-SNAP isovelocity solution.
The dashed line is the linear reflection loss approximation
using Eq. �7� or �35�, and the solid line is for Rayleigh re-
flection loss using the top line of Eq. �35�. Considering the
large number of eigenrays, and therefore bottom reflections
��80 near the critical angle�, the Rayleigh curve is an ex-
tremely good fit. The slight misfit of the linear curve at
around 34 s is entirely due to the small discrepancy seen in
Fig. 8 of about +0.04 dB in 0.25 dB. The value of � quoted
for the curve in Fig. 8 is based on the Rayleigh gradient at

the origin. In spite of this, an experimental measure of the
fall-off rate of the pulse would lead to a reasonably accurate
estimate of this slope.

B. Uniform gradient

The depth-averaged uniform gradient C-SNAP curve is
shown as grey in Fig. 10, and one can see a pronounced
refraction peak �regime 1�. Superimposed are two curves,
both using the Rayleigh reflection loss as in the first lines of
Eqs. �23� and �35�. To compare like with like the closed-form
formulas are depth averaged as described in Appendix B.
The solid line excludes caustic effects �a low frequency ap-
proximation�, and the dashed line includes them �a high fre-

TABLE I. Seabed and water half-space parameters.

Sound speed c
�m/s�

Density d
�kg/m3� /1000

Vol. absorption a
�dB/wavelength�

Water 1500 1.0 0.0
Sediment 1580 1.5 0.1

FIG. 8. Relevant part of the power Rayleigh reflection coefficient for half-
space parameters as in Table I �solid line�, and the linear approximation to it
�dashed line�. The difference reaches 0.04 dB at about 12°. The value of �
is 0.32 ��dB=1.39�.

FIG. 9. Depth averaged pulse shape computed by C-SNAP for isovelocity
water overlaying a half-space seabed defined by parameters in Table I
�grey�. Superimposed are the analytical solutions with Rayleigh reflection
coefficient �black solid line�, and linear approximation �dashed line�.

FIG. 10. Depth averaged pulse shape computed by C-SNAP for uniform
sound speed gradient overlying a half-space seabed defined by parameters in
Table I �grey�. Superimposed are the analytical solutions �also depth aver-
aged� with Rayleigh reflection coefficient, excluding �black solid line�, and
including focusing effects �dashed line�.
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quency approximation�, making the modifications described
in Appendix B. Both curves are very close to C-SNAP and
more or less span its spread.

A more ambitious comparison is to exclude the depth
averaging in all three cases and fix the source and receiver
both at 50 m depth where there is a caustic �Brekhovskikh
and Lysanov, 1982�. The caustic occurs when the ray angle at
the source is horizontal which corresponds to the latest re-
fracting �regime 1� arrival, or the peak in Fig. 11. The
C-SNAP result is smoothed in time in order not to interfere
with its depth variations. Again closed-form solutions are
superimposed including and excluding caustics. Agreement
is particularly good when caustics are included, bearing in
mind that the mean of the C-SNAP curve is 2 or 3 dB below
its peak values.

C. Arbitrary summer profile

Using Eqs. �10� and �11� piece-wise one can construct
the components of Eq. �1�, and therefore a pulse shape, nu-
merically. This has been done with, and without, caustics, for
the summer profile from Fig. 7, and superimposed on the
C-SNAP solution in Fig. 12. Before considering the details
of the early arrivals it is worth noting that in all cases so far
there is a clear point in time beyond which the pulse shape is
linear in decibels, or at least a direct mapping of the reflec-
tion coefficient. This is important from the point of view of
inversion. This delay time is determined by the slowest re-
fracting path �i.e., that which does not reflect from both
boundaries�. In the uniform gradient case this time is given
by tmax �Eq. �20��, which in that case is 33.26 s, as seen in
the plots. In the summer profile case the slowest ray is no
longer the horizontal ray at the source. Instead it is the one
whose turning point is at the top of the thermocline �20 m�,
since the strong curvature steepens the rays in the relatively
slow bottom layer. Rays that remain in the bottom layer must
arrive, according to Eqs. �20� and �21�, between 33.296 and

33.307 s, and are seen as the spike in the figure. Earlier
delays than this correspond to rays that are just steep enough
to enter the top fast layer. Because a very narrow range of
angles at the source accounts for a large range of very long
cycle distances the neglect of focusing effects becomes im-
portant. This explains the misfit of the solid line from 33.0 to
33.3 s but the relatively good fit of the dashed line. Other-
wise the fit of both lines is extremely good for delays beyond
about 33.3 s.

VII. CONCLUSIONS

This paper has derived formulas for the envelope of a
multipath pulse in a shallow water environment with a uni-
form sound speed gradient. Variants are included for more
general profiles. The refracted arrivals that interact only with
the low sound speed boundary form a characteristic quadri-
lateral, or sail shape, near the leading edge of the pulse. In
contrast, the steeper rays that interact with both boundaries
form a long tail that decays more or less exponentially �lin-
early in decibels� with a rate dependent only on the reflection
loss and the water depth. Furthermore this rate is indepen-
dent of range or refraction. Some rules of thumb enable one
to estimate the duration of the first refracted arrival �Eq.
�39�� and the intensity ratio of its maximum and minimum
�Eq. �41��.

Two approaches were taken to calculate the complete
pulse shape. One was to write an exact expression �Eqs. �23�
and �35�� in terms of mixed variables �time, cycle distance,
and derivatives� which require interpolation to reveal pulse
shape. The other was to make approximations to find explicit
functions of time �Eqs. �24�, �36�, and �37��. Two-way pulse
shapes were obtained by numerical convolution rather than
attempting analytical convolution, as was possible in the is-
ovelocity case.

To establish correspondence between these pulse shapes
and the expected eigenray or modal arrivals, three compari-

FIG. 11. Temporally smoothed pulse shape computed by C-SNAP for uni-
form sound speed gradient overlying a half-space seabed defined by param-
eters in Table I �grey line�. Source and receiver depths are both 50 m.
Superimposed are the analytical solutions with Rayleigh reflection coeffi-
cient, excluding �black solid line�, and including focusing effects �dashed
line�.

FIG. 12. Depth averaged pulse shape computed by C-SNAP for a summer
sound speed profile overlying a half-space seabed defined by parameters in
Table I �grey�. Superimposed are the analytical solutions �also depth aver-
aged� with Rayleigh reflection coefficient, excluding �black solid line�, and
including focusing effects �dashed line�.
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sons were made against the normal mode model C-SNAP,
transforming its output into the time domain. The formulas
for the three cases, isovelocity, uniform sound speed gradi-
ent, and summer profile, show very good agreement with a
depth average or a time smoothing. Also the interpolation
approach can easily handle the Rayleigh reflection loss, in-
stead of its linear approximation.

The reasons for interest in the multipath pulse shape are
threefold. First, the pulse shape is a useful predictor of geoa-
coustic properties because the tail of the pulse �i.e., the part
later than the slowest refracting arrival� decays at a rate that
depends only on water depth and angle derivative of reflec-
tion loss. In addition it is readily available for any existing
active sonar. Equation �35� and the test cases show that there
is also potential for extracting the shape of an arbitrary re-
flection loss curve from experimental data given adequate
signal-to-noise-ratio. Second, it is vital to be able to predict
multipath time spreading in order to adjust signal processing
integration times. Since the shape of the tail is independent
of range it can easily be calculated in advance and incorpo-
rated in typical signal processing feature extractors. Third,
with perfect knowledge of the environment one might be
able to extract a point target by deconvolution of the multi-
path arrivals. With imperfect knowledge one might have a
better chance of deconvolution with the incoherent envelope
predicted here since it is less sensitive to the detailed shifts
and strengths of the eigenrays while retaining the sharp rise
at the leading edge and the correct fall-off. In general this
kind of filter �effectively an exponentially weighted smooth-
ing� is invertible.

In addition, analytical and simple numerical approaches
imply very short computation times so that these solutions
can readily be incorporated in real-time systems, whether
aimed at detection and classification or at geoacoustic inver-
sion.
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APPENDIX A: PULSE SHAPE AS AN EXPLICIT
FUNCTION OF TIME

There are two refraction regimes. In the first, rays inter-
act only with the boundary on the cL side; in the second, they
interact with both boundaries. By making approximations the
components of pulse shape Eqs. �23� and �35� are written as
explicit functions of time.

1. Regime 1 contribution

The expression for t �Eq. �15�, main text� is expanded as
a series in u then differentiated with respect to t. This series
is convergent since the argument of asinh �namely tan �L� is
smaller than unity in the region of interest. Therefore one can
invert the series �Morse and Feshbach, 1953�. Equation �15�
is expanded as

t =
2ru

c�
�� c�

2cLu
� −

1

6
� c�

2cLu
�3

+
3

40
� c�

2cLu
�5

−
5

112
� c�

2cLu
�7

+ ¯ �
=

r

cL
�1 −

1

6
� c�

2cLu
�2

+
3

40
� c�

2cLu
�4

−
5

112
� c�

2cLu
�6

+ ¯ � .

�A1�

This can be rearranged as

� = 1 − tcL/r = 1
6X − 3

40X2 + 5
112X3 − ¯ , �A2�

where X = � c�

2cLu
�2

. �A3�

The inverse series is

X = 6� +
81

5
�2 +

5184

175
�3 − ¯ . �A4�

Numerically one can easily evaluate t�u� from Eq. �A1�
or �15� and u�t� from Eq. �A4� and plot them on the same
graph to demonstrate convergence and consistency. The in-
tensity is given in terms of u by Eq. �2.6� from Harrison
�2003b�, so following Eq. �1�, one needs an expression for
du /dt. Differentiating Eq. �A3� with respect to u and Eq.
�A2� with respect to t leads to

du

dt
=

du

dX

dX

d�

d�

dt
=

dX

d�
�2cL

c�
�2u3cL

2r
=

dX

d�

c�

4rX3/2 �A5�

then differentiating Eq. �A4� with respect to � and substitut-
ing yields

du

dt
=

1

4
6

c�

r�3/2 f��� , �A6�

where

f��� =
�1 +

2 � 81

6 � 5
� +

3 � 5184

6 � 175
�2 + ¯ �

�1 +
81

6 � 5
� +

5184

6 � 175
�2 + ¯ �3/2

= 1 +
27

20
� −

891

1120
�2 + ¯

= 1 + 1.35� − 0.7955�2 + ¯ . �A7�

Because r /cL� t
r /cH, � is similarly bounded ��L��
��H�. The limiting values of � are �L=0, �H=Hc� /cH= �cH

−cL� /cH. An extreme case might have cH−cL=30 m/s so
�H�0.02. Thus the second term in f��� is very small and
the third is quite negligible. Notice that the first-order
term in Eq. �A6� �i.e., setting f =1� could easily have been
obtained directly from Eq. �A1� by taking just the first two
terms and differentiating.

The resulting regime 1 contribution to the pulse shape
can be written as an explicit function of t �and tL=r /cL�,

I1dt =
dt

�tL − t�3/2� tL
3/2c�

6r2

exp�− ��Lc�/2cL�r�� . �A8�
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2. Regime 2 contribution

If one expands the asinh terms of Eq. �27�—main
text—in a third-order Taylor series about an angle �0 inter-
mediate between �L and �H, where tan �0=2Hu, one arrives
at

t =
r

2

1 + �2Hu�2�A + B/u2� , �A9�

where

A = � 1

cL
+

1

cH
� −

�Hc��2

12
�3� cH + cL

cH
2 cL

2 � − � 1

cL
3 +

1

cH
3 �� ,

�A10�

B = −
�c��2

6 � 16
� 1

cL
3 +

1

cH
3 � . �A11�

Even retaining only the first term of A this is an ex-
tremely good approximation. Neglect of B results in a slight
discrepancy for early arrivals, but under these conditions the
formula can be inverted to give

u2 = ��t/t0�2 − 1�/�2H�2 = � t − t0

t0
�� t + t0

2t0
� 1

2H2 , �A12�

where

t0 =
r

2
� 1

cL
+

1

cH
� . �A13�

This suggests the alternative

u2 = � t − tmin

t0
� 1

2H2 + umin
2 �A14�

or even

u2 = � t − tmin

tmin
� 1

2H2 + umin
2 �A15�

Equation �34�—main text—can be written as

du

dt
= 1�� t

u
−

2r


�2H�cH + cL��2u4 + 2�cL
2 + cH

2 �u2 + �c�/2�2� �A16�

and substituting Eq. �A14� or �A15� in this makes a good
approximation which can be used in Eq. �35�—main text—
for the pulse shape, but the form is not useful for convolu-
tion. A poorer approximation is obtained by differentiating
the approximate form, Eq. �A12�, to obtain

du

dt
=

t

�2Ht0�2u
=

t

2Ht0

t2 − t0

2
. �A17�

As functions of t these two approximations are, respec-
tively,

I2dt = � t

b1t + b0

−
1


c2t2 + c1t + c0
�−1

� exp�− a1t − a0�dt 2Hf0, �A18�

I2dt =
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2
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1

t0
dtf0, �A19�

where the constants a0, a1, b0, b1, c0, c1, c2, f0 are given by

a0 = r��LaL + �HaH��umin
2 2t0H2 − tmin�/�t0H� ,
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� ,
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�2rt0H�2 ,

f0 =
2

rH
exp�− c�r��L/cL − �H/cH�/4�

and t0 is given by Eq. �A13�.

APPENDIX B: CAUSTICS, FOCUSING, AND DEPTH
AVERAGING

At high frequencies in shallow water it is well known
�Brekhovskikh and Lysanov, 1982� that there is a pattern of
caustics in depth-range space. The effects of taking a range
average of intensity in such a field was investigated by
Weston �1980�. It is possible to extend his formulas to the
two regimes considered here by inserting Wentzel–Kramers–
Brillouin �WKB� modes into an incoherent mode sum and
then writing modes and wave numbers in terms of a con-
tinuum of angles at source, receiver, and seabed �Harrison,
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2003b�. The relationships among mode normalization, cycle
distance, and wave number K come from differentiating the
WKB “phase integral” with respect to wave number. The
result is

E = 2		 �s
2�r

2Adn/�Kr� =	 �s
2�r

2AdK/�uKr�

=
4

r
	 uAdK

K tan �s tan �r
=

4

r
	 u tan �LAd�L

tan �s tan �r
, �B1�

where �s,r are the modes at source and receiver, A is the
Gaussian attenuation term already calculated in Secs. III and
IV, and the integral limits are understood to span the part of
the duct for which angles are real. This is converted to pulse
shape by writing

Idt =
4

r
	 u tan �LA

tan �s tan �r

d�L

dt
dt . �B2�

Comparing this with the regime 1 �Eq. �23�, main text�
and regime 2 �Eq. �35�� formulas, having used the appropri-
ate relationships between �L and u, �Eqs. �13� and �25�� it is
found that they differ by “focusing factors” of, respectively,

f1 =
sin2 �L

tan �s tan �r
, �B3�

f2 =
sin �L cos �L

tan �s tan �r
�2HuaL −

c�

4cLu
�

�
tan �L tan �H cos2 �L

tan �s tan �r
. �B4�

The first term has the effect of introducing a singularity
in intensity whenever the angle at source, or receiver, or both
is zero. Both terms tend to cos2 � for fairly large angles, i.e.,
the tail of the pulse. It can be shown, by an eigenray deriva-
tion, that this is due to the approximation of slant range by
horizontal range. Notice that in the application to pulse shape
these terms are merely multipliers, so the problems of inte-
gration encountered by Weston �1980� are avoided. Inclusion
or exclusion of these terms can be regarded as defining a
high or low frequency limit.

By making use of the modes’ orthogonality, namely
��r

2dz=1, the depth average of Eq. �B1�, is simply

E = 2		 �s
2Adn/�KrH� =	 �s

2AdK/�uKrH�

=
2

rH
	 AdK

K tan �s
=

2

rH
	 tan �LAd�L

tan �s
. �B5�

In the case of the simplified formulas of Sec. IV the turning
point depth h for each ray determines the relevant weighting

h /H in the depth average. For a uniform gradient it can be
shown that h is related exactly to u by

h =
cL

c�
�
1 +

c�2

4u2cL
2 − 1� , �B6�

which clearly has the property that it is exactly H when u
=umin �see Eq. �17�, main text�, it is hs when u=umax, �Eq.
�16��, and it is zero if �L=0 since u would be infinity.
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