Achieving maritime situational awareness using knowledge graphs: a study

DEFENCE AND SPACE
Jacques EVERWYN, Abdel-Illah MOUADDIB, Bruno ZANUTTINI, Sylvain GATEPAILLE, Stephan BRUNESSAUX
08 October 2019
Context

- A PhD thesis (CIFRE)
- 3 years (Feb. 2018 -> 2021)
- A collaboration between Airbus and GREYC laboratory

Supervisors:
- Stéphan Brunessaux
- Sylvain Gatepaille

Team MAD: Models, Agents, Decision

Supervisors:
- Abdel-Illah Mouaddib
- Bruno Zanuttini
Context and objectives

• Maritime intelligence operators face a huge flow of data

• Human experts can’t process everything

• Experts define interactions between entities of a situation (subordination, conflict, proximity…)

• Use every data at disposal (prior information fusion)

• Generate new links/entities from the data

Automated threat assessment
Table of content

• Maritime example

• Tools

• Application to Maritime Situational Awareness

• Proposed Knowledge Graph

• Experiments
Maritime example
Situation

- Relation from situation
- Relation generated from model
- 0.99 Confidence level of the relation
- :hasFlag Relation type

Indian Ocean

A high sea area

Country A

Ship A

Latitude: 15.8
Longitude: 64

Cargo

Ship B

Country B

Latitude: 15.8
Longitude: 64

:hasFlag

Relation type

:moveIn

:locatedIn

0.95

0.95

0.95

0.95

0.85

0.85

0.85

0.85
Situation change

- Relation from situation
- Relation generated from model
- 0.99 Confidence level of the relation
- :hasFlag Relation type

Ship A
- :hasFlag
- :stoppedIn
- :isCloseOf
- Latitude: 16
- Longitude: 65

Ship B
- :hasFlag
- :stoppedIn
- :isCloseOf
- Latitude: 16
- Longitude: 65

Country A
- :hasFlag

Country B
- :hasFlag

Indian Ocean

A high sea area

Cargo

0.99 :hasFlag
0.90 :stoppedIn
0.86 :isCloseOf
0.95 :hasFlag
0.85 :hasLocation
0.95 :hasLocation
0.95 :hasVesselType
0.95 :hasLocation

0.99 :hasFlag
0.91 :stoppedIn
0.86 :isCloseOf
0.95 :hasFlag
0.85 :hasLocation
0.95 :hasLocation
0.95 :hasVesselType
0.95 :hasLocation

T1
DEFENCE AND SPACE

New knowledge

- Relation from situation
- Relation generated from model
- :hasFlag Relation type

Indian Ocean

A high sea area

Country A

Ship A

Ship B

Country B

Cargo

Latitude: 16
Longitude: 65

Latitude: 16
Longitude: 65

0.99 :hasFlag

0.90 :stoppedIn

0.91 :stoppedIn

0.95 :hasFlag

0.85 :hasLocation

0.95 :hasVesselType

0.85 :hasLocation

0.95 :hasVesselType

0.99 :hasFlag

0.86 :isCloseOf

0.80 :performTranshipping

0.99 Confidence level of the relation
Is this situation a threat?
- Yes, if two countries engaged in a war
- Not a threat, unless you are monitoring illegal fishing

To deal with:
- assessments too complex for a rule…
- … but still learnable
Tools
Semantic representation, embeddings
Tools

Semantic representation: knowledge graph (KG)

- A set of RDF triples
- Orientation = Subject $\xrightarrow{\text{relation}}$ Object
- Ontology = classes definition (T-box);
- KG = instanciation (A-box)
Tools

Embeddings

• A mapping of a discrete/categorical variable to a vector of continuous numbers

• With neural networks: low-dimensional, learned continuous vectors representation of discrete variables.

• Purposes:
 – Nearest neighbors (e.g. for recommendations)
 – **Input for supervised ML task**
 – Visualization of concepts and relations between categories

![TSNE Visualization of Book Embeddings](image)
Use deep learning to learn an embedding of the knowledge graph to perform link prediction.
Application to Maritime Situational Awareness
Application to MSA

• Temporal evolution
 – A situation always changes
 – Links appear/disappear
 – Follow evolution of entities and relations

• Heterogeneous data
 – Sensors (AIS)
 – Contextual information, previous events (GDELT, ICEWS)

• Training
 – Limited labelled dataset
 – Few training examples (expert knowledge)
 – Large dataset to infer
Application to MSA

- Evolution of attributes:
 - Static (name, flag)
 - Dynamic:
 - Kinematic (position, speed)
 - Non-kinematic (passengers, cargo)

- Explainability of decision processes

- With the new extracted information, how to tell if the new situation is a threat or not?

- Ideally: data stream as input
Formalisation
Dynamic attributed knowledge graph (DAKG)

• Let E be a set of entities, R a set of relations, A a set of attributes, $D(a)$ the range of an attribute $a \in A$, τ the set of time points.

• Relational quadruples: (e^s, r, e^o, t)
• Attributional quadruples: (e, a, v, t)

• Relational history: $KG^{R,<t}$
• Attributional history: $KG^{A,<t}$

• Prediction task: $f: KG^{R,<t}, KG^{A,<t} \rightarrow KG^{R,t}$
Experiments
Experiments: task

• Prediction of the position of a vessel in the next time points

• Ultimate goal: exploit all the relationships, events and attributes in the maritime surveillance ecosystem to perform better link predictions

• Reduction of this task to test DAKG capabilities (proof of concept)
Experiments: methods

TransE [Bordes 13’]
- Static graph (triples)
- Distance between \(e^s + r \) and \(e^o \approx 0 \)
- Margin-based ranking criterion against corrupted triples

Know-Evolve [Trivedi 17’]
- Dynamic (quadruples)
- RNN based
- Maximizes the probability of a specific type of event at time \(t \) between two entities

Relational score: \(e^s \times r \times e^o \)
Temporal drift: \(t - t_e \)
Experiments: dataset

One week of maritime traffic in the Gibraltar Strait

<table>
<thead>
<tr>
<th>#Vessels</th>
<th>#Areas</th>
<th>#Events</th>
<th>#Train</th>
<th>#Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,545</td>
<td>1,556</td>
<td>955k</td>
<td>720k</td>
<td>235k</td>
</tr>
</tbody>
</table>

One month of data in the Gibraltar Strait (02/02/17 to 02/03/17)

Input data: \((e^y, r, e^0, t)\)
Experiments: results

True events are ranked against corrupted events

Test set: the last eight days of the dataset
Conclusion and future work

In this article we:

• Showed that current KG models are not sufficient for modelling the movement of a vessel
• Exhibited the challenges that need to be overcome to apply DAKGs on MSA

For the future we want to:

• Make the prediction task more realistic by adding more entity and relation types in the dataset
• Find a model that can handle link and attribute prediction in a temporal setting
• Perform threat and/or anomaly detection on DAKGs.
Thank you

Contact: jacques.everwyn@airbus.com
Bibliography

Y. Lin et al., "Knowledge Representation Learning with Entities, Attributes and Relations", Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), 2016

Y. Tay et al., "Multi-Task Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs", CIKM, 2017

J. Li et al., "Streaming Link Prediction on Dynamic Attributed Networks", in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining - WSDM, 2018