PHOTONICS APPLIED TO COHERENT RADAR NETWORKS FOR BORDER SECURITY

Salvatore Maresca1, Giovanni Serafino1, Filippo Scotti2, Leonardo Lembo1,3
Paolo Ghelfi2, Antonella Bogoni1,2

1TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
2PNTLab, Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Pisa, Italy
3Italian Navy, Centro Supporto Sperimentazione Navale (CSSN), Vallauri Institute, Livorno, Italy
OUTLINE

- Photonic Technology for Distributed Radar Networks
 - Challenges in Maritime Surveillance
 - Distributed Radar Networks (Decentralized vs Centralized)
 - Photonics for Distributed Radar Networks

- Maritime Surveillance in the Port of Livorno (Italy)
 - The NATO-SPS SOLE Project
 - Simulation of the Maritime Scenario
 - Detection Applied to a Distributed Radar
 - Preliminary Simulation Results

- Preliminary Photonics-Assisted Distributed Radar Network Architecture
 - Down-scaled System Architecture
 - Experimental Setup and Results

- Conclusions
PHOTONIC TECHNOLOGY FOR DISTRIBUTED RADAR NETWORKS
CHALLENGES IN MARITIME SURVEILLANCE

- **TASKS**
 - Detection
 - Tracking
 - Classification
 - Identification

- **AVAILABLE SENSORS**
 - Synthetic Aperture Radar (SAR) imagery
 - Automatic Identification System (AIS)
 - Very High Resolution (VHR) imagery
 - Coastal radars (e.g., HF, S, X bands)
 - etc...

- **CHALLENGES in RADAR SYSTEMS**
 - Target RCS fluctuations (up to 25dB!)
 - Sea clutter features (e.g., sea spikes)

- **POSSIBLE SOLUTIONS**
 - Multiband operation
 - Multisensor operation

REFERENCE:
DISTRIBUTED RADAR NETWORKS

DECENTRALIZED Radar Network
Multistatic Radar

- Local preprocessing at the slave nodes
- Fair-bandwidth links for signal distribution

CONS:
- Complex slave nodes
- Information from sensor fusion not truly maximized

CENTRALIZED Radar Network
Multiple-Input Multiple-Output (MIMO) Radar

- Maximization of information from sensor fusion

CONS:
- Time and phase synchronization
- Large-bandwidth links for signal distribution

HOWEVER...
Photonic technology allows to overcome these problems!

REFERENCE:
- Excellent phase stability in multiband signal up/down-conversion
- Preservation of phase stability upon signal distribution
- A single photonic core manages multiple distributed radar heads (Centralized Architecture)!

REFERENCE:
MARITIME SURVEILLANCE IN THE PORT OF LIVORNO (ITALY)
THE NATO-SPS SOLE PROJECT

Multistatic and Multiband Coherent Radar Fleet for Border Security

- Implementation/field trial of a multiband distributed MIMO radar network
- Optimization of target detection algorithms upon MIMO processing
- Fusion of 2D-ISAR images and 3D-ISAR imaging

The Project

http://www.sole-natosps.eu/
For each TX\textsubscript{k}-RX\textsubscript{l} radar pair (k=1,...,M and l=1,...,N), the e.m. scatterers within the target silhouette are extracted. For simplicity, we assume one e.m. scattering element at the crossing of each TX\textsubscript{k}-RX\textsubscript{l} range cell. Based on the point-like scatterers, the received signal at TX\textsubscript{k}-RX\textsubscript{l} can be generated:

\[r_{k,l}(t) = \sum_{m=1}^{Ns} a_{k,l}^m s_k(t - \tau_{k,l}^m) e^{j[\theta_t(t) - \tau_{k,l}^m - \theta(t)]} + n_{k,l}(t) \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_k(t))</td>
<td>Signal transmitted by TX\textsubscript{k}</td>
</tr>
<tr>
<td>(a_{k,l}^m)</td>
<td>Amplitude factor</td>
</tr>
<tr>
<td>(\tau_{k,l}^m)</td>
<td>Delay due to bistatic distance</td>
</tr>
<tr>
<td>(n_{k,l}(t))</td>
<td>Additive white Gaussian noise (AWGN)</td>
</tr>
<tr>
<td>(Ns)</td>
<td>No. of scatterers seen by TX\textsubscript{k}-RX\textsubscript{l}</td>
</tr>
</tbody>
</table>

System Geometry

Extraction of scatterers
Finally, the coherent MIMO cross-ambiguity function can be estimated in the 2D Cartesian space:

\[
\Lambda[r(t)] = c' \left| \sum_{k=1}^{M} \sum_{l=1}^{N} e^{-j2\pi f_c \tau_{k,l}} \int r_{k,l}^{BB^*}(t) s_k^{BB} (t - \tau_{k,l}) dt \right| + c''
\]

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiff length (L)</td>
<td>10 m</td>
</tr>
<tr>
<td>Number of TXs (N_{TX})</td>
<td>3</td>
</tr>
<tr>
<td>Number of RXs (N_{RX})</td>
<td>3</td>
</tr>
<tr>
<td>Waveform</td>
<td>LFM Chirp</td>
</tr>
<tr>
<td>Carrier frequency (f_c)</td>
<td>9.7 GHz</td>
</tr>
<tr>
<td>Bandwidth (B)</td>
<td>100 MHz</td>
</tr>
</tbody>
</table>

Spatial coherent MIMO processing allows to image the target!
Cell Averaging – Constant False Alarm Rate (CA-CFAR) Detection

Target detection is performed in the **cell under test** (CUT):

\[
Y > H_1 \quad \text{and} \quad Y < H_0 \quad T \cdot Z
\]

The CFAR criterion keeps the **probability of false alarm below a preset acceptable level**.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y = \Lambda[r(t)])</td>
<td>Detection statistic</td>
</tr>
<tr>
<td>(H_1)</td>
<td>target present in the CUT</td>
</tr>
<tr>
<td>(H_0)</td>
<td>target absent in the CUT</td>
</tr>
<tr>
<td>(T)</td>
<td>Scale factor (deterministic)</td>
</tr>
<tr>
<td>(Z)</td>
<td>Noise power estimate</td>
</tr>
</tbody>
</table>

How do we choose the training cells?
PRELIMINARY SIMULATION RESULTS

Non-Coherent 3x3 MIMO Output

The number of false alarms due to sidelobes is reduced!

Rectangular Training Cells

Ellipsoidal Training Cells

Detection Outputs

false alarms!
PRELIMINARY PHOTONICS-ASSISTED DISTRIBUTED RADAR NETWORK ARCHITECTURE
PRELIMINARY SYSTEM ARCHITECTURE

Photonic 2x2 MIMO Radar Architecture

Radar network configuration:
- 2 radar transceivers
- Single-band @ 9.7 GHz
- 100 MHz bandwidth
- LFM chirp: PW 100 ns, PRI 50 μs

Fiber network configuration:
- One fiber pair for each RH
- Analog Radio-over-Fiber
- Bandwidth compatible with ITU

REFERENCE:
Targets:
- 2 cylinders in metal net, 50cm x 34cm Ø
- Suspended to small quad-copter drones, 15÷20m above the floor
- Distance between targets: ~3m
- Positions checked with GPS data from drone

EXPERIMENTAL SETUP

In-field trials on TeCIP roof

Target carried by the drone

1 km fiber
Non-Coherent vs Coherent 2x2 MIMO Results

Non-coherent MIMO

Coherent MIMO

Antennas HPBW ≈50°, target distance ≈18m → Cross-range Resolution: ≈15 m
Resolution Enhancement: 5x!
CA-CFAR Detection Results

CA-CFAR (rectangular training cells)

CA-CFAR (ellipsoidal training cells)

The coherent MIMO processing is capable of distinguishing the 2 targets. The proposed modified CA-CFAR approach allows to detect them and to mitigate the number of false alarms due to sidelobes!
The contribution of **photonic technology** is decisive for developing distributed centralized radar networks, due to the high level of coherence granted upon signal generation, reception and distribution.

A **distributed multiband photonics-assisted 3x3 MIMO radar system** will be operated in a real maritime surveillance scenario within the NATO-SPS SOLE Project.

In this work, a preliminary operative scenario has been considered. A simple methodology has been proposed to **simulate extended targets**, by extracting the main scattering elements observed by each bistatic TX-RX radar composing the distributed radar network.

A **modified version of the CA-CFAR detection strategy has been proposed** to cope with false alarms due to cross-range sidelobes in the MIMO cross-ambiguity function.

Moreover, **results of a preliminary down-scaled 2x2 MIMO system architecture working in an outdoor scenario have shown the potential of photonics-assisted MIMO radars**, in terms of enhanced cross-range resolution and target imaging capability.
THANK YOU VERY MUCH!
PhD student and post-doc positions are available
at Scuola Superiore Sant’Anna / CNIT in Pisa, Italy

If interested, please send an email to:

antonella.bogoni@cnit.it
paolo.ghelfi@cnit.it